Skip to main content
Log in

Thin nanoporous anodic alumina film on aluminium for passive radiative cooling

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We demonstrate a simple, low-cost, and passive radiative cooler based on a monolithic design consisting of thin nanoporous anodic alumina (NAA) films grown on aluminium sheets. The NAA/Al structure maintains a high broadband reflectivity close to 98\(\%\) within the solar spectrum (0.4–2.2 \(\mu \)m) and simultaneously exhibits a high average emissivity of 88\(\%\) within the atmospheric infrared (IR) transmission window of 8–13 \(\mu \)m with the peak IR emission approaching 99\(\%\) at a wavelength of 10 \(\mu \)m. Optical modelling of the system using optical parameters of the materials confirms that the high solar reflectance arises due to the transparent nature of NAA and high reflectivity of bottom Al, while the large thermal IR emissivity arises from the interference effects of the NAA film and the high absorption of IR light due to phonon resonances in alumina at wavelength larger than 10 \(\mu \)m. Further, we estimate the average cooling power of NAA/Al to be about 136 W \(\hbox {m}^{-2}\) at ambient temperature even after including the contribution to heat input from external non-radiative processes. This robust and lightweight NAA/Al can be projected as an excellent alternative to optical solar reflectors used in spacecraft for thermal heat management and rooftop cooling green technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G B Smith and C G Granqvist, in Green nanotechnology: solutions for sustainability and energy in the built environment (CRC Press, Boca Raton, 2010)

    Book  Google Scholar 

  2. UNEP, Buildings and Climate Change: Status, Challenge and Opportunities 2007 United Nations Environmental Programmer Paris France

  3. D Michell and K L Biggs, Appl. Energy 5, 263 (1979)

    Article  Google Scholar 

  4. T E Johnson, Sol. Energy 17, 173 (1975)

    Article  ADS  Google Scholar 

  5. B Bartoli, S Catalanotti, B Coluzzi, V Cuomo, V Silvestrini and G Troise, Appl. Energy  3, 267 (1977)

    Article  Google Scholar 

  6. B Givoni, Energy Build. 1, 141 (1977)

    Article  Google Scholar 

  7. C G Granqvist and A Hjortsberg, Appl. Phys. Lett. 36, 139 (1980)

    Article  ADS  Google Scholar 

  8. B Orel, M K Gunde and A Krainer, Sol. Energy  50, 477 (1993)

    Article  ADS  Google Scholar 

  9. T M Nilsson and G A Niklasson, Sol. Energy Mater. Sol. Cells 37, 93 (1995)

    Article  Google Scholar 

  10. A R Gentle, J L C Aguilar and G B Smith, Sol. Energy Mater. Sol. Cells 95, 3207 (2011)

    Article  Google Scholar 

  11. A W Harrison and M R Walton, Sol. Energy 20, 185 (1978)

    Article  ADS  Google Scholar 

  12. T M Nilsson, G A Niklasson and C G Granqvist, Sol. Energy Mater. Sol. Cells 28, 175 (1992 )

    Article  Google Scholar 

  13. A P Raman, M A Anoma, L Zhu, E Rephaeli and S Fan, Nature 515, 540 (2014)

    Article  ADS  Google Scholar 

  14. J L Kou, Z Jurado, Z Chen, S Fan and A J Minnich, ACS Photon. 4, 626 (2017)

    Article  Google Scholar 

  15. K Sun, C A Riedel, Y Wang, A Urbani, M Simeoni, S Mengali, M Zalkovskij, B Bilenberg, D G Brian, C H de Groot and O L Muskens, ACS Photon. 5, 495 (2018)

    Article  Google Scholar 

  16. M M Hossain, B Jia and M Gu, Adv. Opt. Mater. 3, 1047 (2015)

    Article  Google Scholar 

  17. G Dayal and S A Ramakrishna, J. Opt. 16, 094016 (2014)

    Article  ADS  Google Scholar 

  18. Y Fu, J Yang, Y S Su, W Du and Y G Ma, Sol. Energy Mater. Sol. Cells 191, 50 (2019)

    Article  Google Scholar 

  19. A R Gentle and G B Smith, Nano Lett. 10, 373 (2010)

    Article  ADS  Google Scholar 

  20. E Rephaeli, A Raman and S Fan, Nano Lett. 13, 1457 (2013)

    Article  ADS  Google Scholar 

  21. Gemini Observatory 2018 IR Transmission Spectra Accessed: On 03-10-2018 http://www.gemini.edu/sciops/instruments/mid-ir-resources/spectroscopic-calibrations/atmospheric-transmission-data

  22. PV Lighthouse 2018 Solar spectrum calculator accessed: On 03-10-2018 https://www.pvlighthouse.com.au/

  23. H Masuda and K Fukuda, Science 268, 1466 (1995)

    Article  ADS  Google Scholar 

  24. H Masuda, F Hasegwa and S Ono, J. Electrochem. Soc. 144, L127 (1997)

    Article  Google Scholar 

  25. D Pratap, P Mandal and S A Ramakrishna, Pramana – J. Phys. 83, 1025 (2014)

    Article  ADS  Google Scholar 

  26. D Pratap, S A Ramakrishna, J G Pollock and A K Iyer, Opt. Express 23, 9074 (2015)

    Article  ADS  Google Scholar 

  27. S Shingubara, J. Nanopart. Res. 5, 17 (2003)

    Article  ADS  Google Scholar 

  28. J Kischkat, S Peters, B Gruska, M Semtsiv, M Chashnikova, M Klinkmüller, O Fedosenko, S Machulik, A Aleksandrova, G Monastyrskyi, Y Flores and W T Masselink, Appl. Opt. 51, 6789 (2012)

    Article  ADS  Google Scholar 

  29. T G Mackay and A Lakhtakia, J. Nanophoton. 6, 069501 (2012)

    Article  ADS  Google Scholar 

  30. D Polder and J H Van Santeen, Physica  12, 257 (1946)

    Article  ADS  Google Scholar 

  31. J K Pradhan, Spectral control of infrared absorption and emission by metamaterials, Ph.D. thesis (Indian Institute of Technology, Kanpur, 2019)

  32. J Peatross and M Ware, Physics of light and optics (available at optics.byu.edu, 2011) Chap. 4, p. 105

  33. G E J Poinern, N Ali and D Fawcett, Materials 4, 487 (2011)

    Article  ADS  Google Scholar 

  34. H Yuan, C Yang, X Zheng, W Mu, Z Wang, W Yuan, Y Zhang, C Chen, X Liu and W Shen, Opt. Express 26, 27885 (2018)

    Article  ADS  Google Scholar 

  35. L Zhu, A Raman and S Fan, Appl. Phys. Lett. 103, 223902 (2013)

    Article  ADS  Google Scholar 

  36. D Wu, C Liu, Z Xu, Y Liu, Z Yu, L Yu, L Chen, R Li, R Ma and H Ye, Mater. Design 139, 104 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

SAR acknowledges the funding from Department of Science and Technology, Ministry of Science and Technology (DST) (Project No. DST/SJF/PSA-01/2011-2012) and JKP thanks UGC-India for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jitendra K Pradhan or Dheeraj Pratap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, J.K., Pratap, D. & Ramakrishna, S.A. Thin nanoporous anodic alumina film on aluminium for passive radiative cooling. Pramana - J Phys 95, 46 (2021). https://doi.org/10.1007/s12043-021-02076-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02076-2

Keywords

PACS

Navigation