Skip to main content
Log in

Generalised conservation laws, reductions and exact solutions of the \(K(m,n)\) equations via double reduction theory

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this article, we present the general form of conservation laws for the nonlinear Rosenau–Hyman compacton K(mn) equations using multiplier’s approach. General formulas for some new conservation laws are established for the K(mn) equations. We describe three different cases where Lie symmetries are associated with these generalised conservation laws. The double reduction theory is utilised to construct some new reductions and exact solutions for different values of m and n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P Laplace, Traité de mécanique céleste (Paris, 1798), Vol. 1 (English translation: Celestial mechanics (New York)

  2. E Noether, Transp. Theory Stat. Phys. 1(3), 186 (1971)

    Article  ADS  Google Scholar 

  3. A Kara, F Mahomed, I Naeem and C Wafo Soh, Math. Meth. Appl. Sci. 30(16), 2079 (2007)

    Article  Google Scholar 

  4. H Steudel, Z. Naturforsch. A 17(2), 129 (1962)

    Google Scholar 

  5. P J Olver, Applications of Lie groups to differential equations (Springer Science & Business Media, 2000) Vol. 107

  6. R Naz, F M Mahomed and D Mason, Appl. Math. Comput. 205(1), 212 (2008)

    MathSciNet  Google Scholar 

  7. A Kara and F Mahomed, Int. J. Theor. Phys. 39(1), 23 (2000)

    Article  Google Scholar 

  8. A Sjöberg, Appl. Math. Comput. 184(2), 608 (2007)

    MathSciNet  Google Scholar 

  9. A Sjöberg, Nonlinear Anal.: Real World Appl. 10(6), 3472 (2009)

    Article  MathSciNet  Google Scholar 

  10. A H Bokhari, A Y Al-Dweik, F Zaman, A Kara and F Mahomed, Nonlinear Anal.: Real World Appl. 11(5), 3763 (2010)

    Article  MathSciNet  Google Scholar 

  11. P Rosenau and J M Hyman, Phys. Rev. Lett. 70(5), 564 (1993)

    Article  ADS  Google Scholar 

  12. P Rosenau, Phys. Lett. A 275(3), 193 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. P Rosenau, Phys. Rev. Lett. 73(13), 1737 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  14. M Ismail and T Taha, Math. Comput. Simul. 47(6), 519 (1998)

    Article  Google Scholar 

  15. J-H He and X-H Wu, Chaos Solitons Fractals 29(1), 108 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. A Wazwaz, Chaos Solitons Fractals 13(2), 321 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. M Bruzón and M Gandarias, Math. Meth. Appl. Sci. 41(15), 5851 (2018)

    Article  Google Scholar 

  18. P Rosenau, Phys. Lett. A 356(1), 44 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. A Zilburg and P Rosenau, J. Phys. A 51(39), 395201 (2018)

    Article  MathSciNet  Google Scholar 

  20. P Rosenau and A Zilburg, Phys. Lett. A 380(35), 2724 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. M Bruzón, M Gandarias, M Torrisi and R Tracina, Nonlinear Anal.: Real World Appl. 13(3), 1139 (2012)

  22. R Naz, Appl. Math. Lett. 25(3), 257 (2012)

    Article  MathSciNet  Google Scholar 

  23. J Vodová, Nonlinearity 26(3), 757 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. R Tracinà, I L Freire and M Torrisi, Commun. Nonlinear Sci. Numer. Simul. 32, 225 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. A F Cheviakov, Comput. Phys. Commun. 176(1), 48 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. T Wolf, A Brand and M Mohammadzadeh, J. Symbolic Comput. 27(2), 221 (1999)

    Article  MathSciNet  Google Scholar 

  27. A-M Wazwaz, Math. Comput. Model. 40(5–6), 499 (2004)

    Article  Google Scholar 

  28. A-M Wazwaz, Comput. Math. Appl. 49(7–8), 1101 (2005)

    Article  MathSciNet  Google Scholar 

  29. A-M Wazwaz, Appl. Math. Comput. 195(1), 24 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Naeem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, A., Naeem, I. Generalised conservation laws, reductions and exact solutions of the \(K(m,n)\) equations via double reduction theory. Pramana - J Phys 95, 30 (2021). https://doi.org/10.1007/s12043-020-02071-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02071-z

Keywords

PACS Nos

Navigation