Skip to main content
Log in

Ordered level spacing distribution in embedded random matrix ensembles

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The probability distributions of the closest neighbour (CN) and farther neighbour (FN) spacings from a given level have been studied for interacting fermion/boson systems with and without spin degree of freedom constructed using an embedded Gaussian orthogonal ensemble (GOE) of one plus random two-body interactions. Our numerical results demonstrate a very good consistency with the recently derived analytical expressions using a \(3 \times 3\) random matrix model and other related quantities by Srivastava et al, J. Phys. A: Math. Theor. 52, 025101 (2019). This establishes conclusively that local level fluctuations generated by embedded ensembles (EE) follow the results of classical Gaussian ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J Wishart, Biometrika 20A, 32 (1928)

    Article  Google Scholar 

  2. E P Wigner, Ann. Math. 62, 548 (1955)

    Article  MathSciNet  Google Scholar 

  3. V Plerou, P Gopikrishnan, B Rosenow, L A Nunes Amaral and H E Stanley, Phys. Rev. Lett. 83, 1471 (1999)

    Article  ADS  Google Scholar 

  4. R N Mantegna and H E Stanley, An introduction to econophysics: Correlations and complexity in finance (Cambridge University Press, Cambridge, 1999)

    Book  MATH  Google Scholar 

  5. J Verbaarschot, Quantum chromodynamics, in: The Oxford handbook of random matrix theory edited by G Akemann, J Baik and P Di Francesco (Oxford University Press, Oxford, 2011)

    Google Scholar 

  6. P Seba, Phys. Rev. Lett. 91, 198104 (2003)

    Article  ADS  Google Scholar 

  7. F Haake, Quantum signatures of chaos, Third edn (Springer, Heidelberg, 2010)

    Book  MATH  Google Scholar 

  8. O Bohigas, M J Giannoni and C Schmit, Phys. Rev. Lett. 52, 1 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  9. M V Berry and M Tabor, Proc. Roy. Soc. (London) A 356, 375 (1977)

  10. T A Brody, J Flores, J B French, P A Mello, A Pandey and S S M Wong, Rev. Mod. Phys. 53, 385 (1981)

    Article  ADS  Google Scholar 

  11. A M Garcia-Garcia, T Nosaka, D Rosa and J Verbaarschot, Phys. Rev. D 100, 026002 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. G Akemann, M Kieburg, A Mielke and T Prosen, Phys. Rev. Lett. 123, 254101 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. S Jalan, Pramana – J. Phys. 84, 285 (2015)

    Article  ADS  Google Scholar 

  14. C Sarkar and S Jalan, Chaos 28, 102101 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. A Rai, A V Menon and S Jalan, Sci. Rep. 4, 6368 (2015)

    Article  Google Scholar 

  16. F J Dyson and M L Mehta, J. Math. Phys. 4, 701 (1963)

    Article  ADS  Google Scholar 

  17. M V Berry, Proc. Roy. Soc. (London) A 400, 229 (1985)

  18. M V Berry, Nonlinearity 1, 399 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  19. V Oganesyan and D A Huse, Phys. Rev. B 75, 155111 (2007)

    Article  ADS  Google Scholar 

  20. N D Chavda and V K B Kota, Phys. Lett. A 377, 3009 (2013)

    Article  ADS  Google Scholar 

  21. N D Chavda, H N Deota and V K B Kota, Phys. Lett. A 378, 3012 (2014)

    Article  ADS  Google Scholar 

  22. N D Chavda, Pramana – J. Phys. 84, 309 (2015)

    Article  ADS  Google Scholar 

  23. L Sa, P Ribeiro and T Prosen, Phys. Rev. X 10, 021019 (2020)

    Google Scholar 

  24. A L Corps and A Relano, Phys. Rev. E 101, 022222 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  25. S H Tekur, U T Bhosale and M S Santhanam, Phys. Rev. B 98, 104305 (2018)

    Article  ADS  Google Scholar 

  26. P Rao, M Vyas and N D Chavda, in Eur. Phys. J. Spec. Top 229, 2603 (2020)

  27. T A Brody, Lett. Nuovo Cimento 7, 482 (1973)

    Article  Google Scholar 

  28. K Roy, B Chakrabarti, N D Chavda, V K B Kota, M L Lekala and G J Rampho, EPL 118, 46003 (2017)

    Article  ADS  Google Scholar 

  29. A Sarkar, M Kothiyal and S Kumar, Phys. Rev. E 101, 012216 (2020)

    Article  ADS  Google Scholar 

  30. S C L Srivastava, A Lakshminarayan, S Tomsovic and A Backer, J. Phys. A 52, 025101 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. A Lakshminarayan, S C L Srivastava, R Ketzmerick, A Backer and S Tomsovic, Phys. Rev. E 94, 010205(R) (2016); S Tomsovic, A Lakshminarayan, S C L Srivastava and A Backer, Phys. Rev. E 98, 032209 (2018)

  32. V K B Kota, Phys. Rep. 347, 223 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  33. H A Weidenmüller and G E Mitchell, Rev. Mod. Phys. 81, 539 (2009)

    Article  ADS  Google Scholar 

  34. J M G Gomez, K Kar, V K B Kota, R A Molina, A Relaño and J Retamosa, Phys. Rep. 499, 103 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  35. V K B Kota and N D Chavda, Int. J. Mod. Phys. E 27, 1830001 (2018)

    Article  ADS  Google Scholar 

  36. V K B Kota, Embedded random matrix ensembles in quantum physics (Springer, Heidelberg, 2014)

    Book  MATH  Google Scholar 

  37. R J Leclair, R U Haq, V K B Kota and N D Chavda, Phys. Lett. A 372, 4373 (2008)

    Article  ADS  Google Scholar 

  38. R A Davison, W Fu, A Georges, Y Gu, K Jensen and S Sachdev, Phys. Rev. B 95, 155131 (2017)

    Article  ADS  Google Scholar 

  39. K J Bulycheva, J. High Energy Phys. 12, 069 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  40. V Rosenhaus, J. Phys. A 52, 323001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  41. V K B Kota, N D Chavda and R Sahu, Phys. Lett. A 359, 381 (2006)

    Article  ADS  Google Scholar 

  42. M Vyas, N D Chavda, V K B Kota and V Potbhare, J. Phys. A 45, 265203 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  43. H N Deota, N D Chavda, V K B Kota, V Potbhare and M Vyas, Phys. Rev. E 88, 022130 (2013)

    Article  ADS  Google Scholar 

  44. N D Chavda, V Potbhare and V K B Kota, Phys. Lett. A 311, 331 (2003); Phys. Lett. A 336, 47 (2004)

  45. N D Chavda, V K B Kota and V Potbhare, Phys. Lett. A 376, 2972 (2012)

    Article  ADS  Google Scholar 

  46. M Vyas, V K B Kota and N D Chavda, Phys. Rev. E 81, 036212 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  47. N D Chavda and V K B Kota, Ann. Phys. (Berlin) 529, 1600287 (2017)

    Article  ADS  Google Scholar 

  48. T Papenbrock and H A Weidenmuller, Rev. Mod. Phys. 79, 997 (2007)

    Article  ADS  Google Scholar 

  49. V K B Kota and S Sumedha, Phys. Rev. E 60, 3405 (1999)

    Article  ADS  Google Scholar 

  50. Ph Jacquod and D L Shepelyansky, Phys. Rev. Lett. 79, 1837 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (NDC) thanks V K B Kota for useful discussions. PR and NDC acknowledge financial support from Science and Engineering Research Board, Department of Science and Technology (DST), Government of India (Project No.: EMR/2016/001327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P., Deota, H.N. & Chavda, N.D. Ordered level spacing distribution in embedded random matrix ensembles. Pramana - J Phys 95, 34 (2021). https://doi.org/10.1007/s12043-020-02066-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02066-w

Keywords

PACS Nos

Navigation