Skip to main content
Log in

Perfect fluid and heat flow in f(RT) theory

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Here we have studied locally rotationally symmetric Bianchi-V Universe in the presence of modified theory for gravitation [f(RT) theory] and for that, we considered a perfect fluid with heat conduction as the energy source. We used the law of variation for the deceleration parameter (DP) to solve field equations, as it gives a constant value of DP and is related to the average scale factor metric. Also, we have discussed the physical and geometrical properties of the model in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A G Riess et al, Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  2. S Perlmutter et al, Nature 391, 51 (1998)

    ADS  Google Scholar 

  3. R A Knop et al, Astrophys. J. 598, 102 (2003), arXiv:astro-ph/0309368

    ADS  Google Scholar 

  4. J Hoftuft et al, Astrophys. J. 699, 985 (2009)

    ADS  Google Scholar 

  5. C L Bennett et al, Astrophys. J. Suppl. Ser. 148, 1 (2003)

    ADS  Google Scholar 

  6. D N Spergel et al, Astrophys. J. Suppl. Ser. 148, 175 (2003)

    ADS  Google Scholar 

  7. C Wetterich, Nucl. Phys. B 302, 668 (1988)

    ADS  Google Scholar 

  8. B Ratra and J Peebles, Phys. Rev. D 37, 321 (1988)

    Google Scholar 

  9. R R Caldwell, Phys. Lett. B 545, 23 (2002)

    ADS  Google Scholar 

  10. S Nojiri and S D Odinstov, Phys. Lett. B 562, 147 (2003)

    ADS  Google Scholar 

  11. S Nojiri and S D Odinstov, Phys. Lett. B 565, 1 (2003)

    ADS  Google Scholar 

  12. T Chiba, T Okabe and M Yamaguchi, Phys. Rev. D 62, 023511 (2000), https://doi.org/10.1103/PhysRevD.62.023511

    Article  ADS  Google Scholar 

  13. C Armendariz-Picon, V Mukhanov and P J Steinhardt, Phys. Rev. D 63, 103510 (2001)

    ADS  Google Scholar 

  14. A J Sen, High Energy Phys. 04, 048 (2002)

    ADS  Google Scholar 

  15. T Padmanabhan and T R Chaudhury, Phys. Rev. D 66, 081301 (2002)

    ADS  Google Scholar 

  16. E Elizalde, S Nojiri and S D Odintsov, Phys. Rev. D 70, 043539 (2004)

    ADS  Google Scholar 

  17. A Anisimov, E Babichev and A Vikman, J. Cosmol. Astropart. Phys. 06, 006 (2005)

    ADS  Google Scholar 

  18. A Kamenshchik, U Moschella and V Pasquier, Phys. Lett. B 511, 265 (2001), arXiv:gr-qc/0103004

    ADS  Google Scholar 

  19. M C Bento, O Bertolami and A A Sen, Phys. Rev. D 66, 043507 (2002)

    ADS  Google Scholar 

  20. T Harko et al, Phys. Rev. D Part. Fields 84, 024020 (2011)

    ADS  Google Scholar 

  21. N Godani and G C Samanta, Chin. J. Phys. 66, 787 (2020), arXiv:2005.11156v1

    Google Scholar 

  22. G C Samanta and S N Dhal, Int. J. Theor. Phys. 52, 1334 (2013), https://doi.org/10.1007/s10773-012-1449-3

    Article  Google Scholar 

  23. Can Aktaş and Sezgin Aygün, Chin. J. Phys. 55, 71 (2017), https://doi.org/10.1016/j.cjph.2016.12.003

    Article  Google Scholar 

  24. G C Samanta and R Myrzakulov, Chin. J. Phys. 55(3), 1044 (2017)

    Google Scholar 

  25. D D Pawar, R V Mapari and P K Agrawal, J. Astrophys. Astron. 40, 13 (2019), https://doi.org/10.1007/s12036-019-9582-5

    Article  ADS  Google Scholar 

  26. D D Pawar, G G Buttampalle and P K Agrawal, New Astron. 65, 1 (2018)

    ADS  Google Scholar 

  27. M Sharif, Eur. Phys. J. Plus 133, 6, 226 (2018)

    ADS  Google Scholar 

  28. G C Samanta, Int. J. Theor. Phys. 52, 2303 (2013)

    Google Scholar 

  29. E Elizalde, N Godani and G C Samanta, Physics of the dark Universe (2019), arXiv:1907.05223v2

  30. G C Samanta, Int. J. Theor. Phys. 52, 2647 (2013)

    Google Scholar 

  31. P K Agrawal and D D Pawar, J. Astrophys. Astron. 38, 2 (2017), https://doi.org/10.1007/s12036-016-9420-y

    Article  ADS  Google Scholar 

  32. P K Agrawal and D D Pawar, New Astron. 54, 56 (2017)

    ADS  Google Scholar 

  33. S D Katore, V R Chirde and S P Hatkar, Int. J. Theor. Phys. 54, 3654 (2015), https://doi.org/10.1007/s10773-015-2602-6

    Article  Google Scholar 

  34. G C Samanta, N Godani and K Bamba, Int. J. Mod. Phys. D 29(9), 2050068 (2020), https://doi.org/10.1142/S0218271820500686

    Article  ADS  Google Scholar 

  35. J D Barrow and M S Turner, Nature 292, 35 (1981)

    ADS  Google Scholar 

  36. P K Sahoo, B Mishra and P Sahoo, Eur. Phys. J. Plus 131, 333 (2016)

    ADS  Google Scholar 

  37. O Gron, Phys. Rev. D 33, 1204 (1983)

    ADS  Google Scholar 

  38. Z Yousaf, M Ilyas and M Zaeem-ul-Haq Bhatti, Eur. Phys. J. Plus 132, 268 (2017)

    Google Scholar 

  39. D D Pawar, V J Dagwal and P K Agrawal, Malaya J. Mat. 4(1), 111 (2016)

    Google Scholar 

  40. D D Pawar and S P Shahare, J. Astrophys. Astr. 40, 13 (2019), https://doi.org/10.1007/s12036-019-9582-5

    Article  ADS  Google Scholar 

  41. D D Pawar and S P Shahare, New Astron. 75, 101318 (2020)

    Google Scholar 

  42. Shri Ram, M Zeyauddin and C P Singh, Pramana – J. Phys. 72(2), 415 (2009)

    ADS  Google Scholar 

  43. C P Singh, M Zeyauddin and S Ram, Int. J. Theor. Phys. 47(12), 3162 (2008)

    Google Scholar 

  44. D D Pawar, Y Solanke and R Mapari, arXiv:1607.01234 (2016)

  45. S Nojiri, S D Odintsov and P V Tretyakov, Prog. Theor. Phys. Suppl. 172, 81 (2008)

    ADS  Google Scholar 

  46. K Bamba et al, Astrophys. Space Sci. 342, 155 (2012)

    ADS  Google Scholar 

  47. M Jamil, D Momeni and R Myrzakulov, Eur. Phys. J. C 72, 2137 (2012), arXiv:1210.0001

    ADS  Google Scholar 

  48. M Jamil et al, Cent. Eur. J. Phys. 10(5), 1065 (2012), https://doi.org/10.2478/s11534-012-0103-2

    Article  Google Scholar 

  49. G Steigman and M S Turner, Phys. Lett. B 128, 295 (1983)

    ADS  Google Scholar 

  50. G Hinshaw et al, Astrophys. J. Suppl. Ser. 180, 225, (2009)

    ADS  Google Scholar 

  51. J K Singh, Astrophys. Space Sci. 310, 241 (2007)

    ADS  Google Scholar 

  52. M S Berman, Nuovo Cimento B 74, 182 (1983), https://doi.org/10.1007/BF02721676

    Article  ADS  Google Scholar 

  53. M S Berman and R M Gomide, Gen. Relativ. Gravit. 20, 191 (1988)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are very much grateful to the referee for the useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D D PAWAR or R V Mapari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PAWAR, D.D., Mapari, R.V. & Pawade, J.L. Perfect fluid and heat flow in f(RT) theory. Pramana - J Phys 95, 10 (2021). https://doi.org/10.1007/s12043-020-02058-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02058-w

Keywords

PACS Nos

Navigation