Skip to main content
Log in

Comparative performance study of liquid core cylindrical Bragg fibre waveguide biosensors

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The performance study of various sensing parameters such as sensitivity, detection accuracy and quality parameter of liquid core Bragg fibre waveguide biosensor based on defect mode has been theoretically studied and compared with experimental findings of a similar structure without defect mode. The electromagnetic wave propagation in the present structure has been modelled using the transfer matrix method and Henkel formalism in cylindrical coordinates. The present multilayer structure can provide a band gap between 617 and 929 nm wavelength range at angle of incidence \(\theta = 70^{\circ }\). Due to the presence of a defect layer, a defect mode at 690 nm wavelength is observed in this band-gap region. This defect mode can be treated as a sensing signal in the present study. It is observed that the obtained sensitivity (\(S\approx 334\) nm/RIU) through the defect mode is almost the same as the experimental findings (\(S\approx 330\) nm/RIU) of a similar structure without the defect layer. But the obtained maximum detection accuracy (68.6) and quality parameter (160.4/RIU) of the present structure with defect layer is much larger than the values in a similar structure without defect layer (6.9 and 15/RIU). The present structure having a liquid-filled core, is therefore, favoured and useful in promising biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L Shao, Z Liu, J Hu, D Gunawardena and H Y Tam, Micromachines 9(4), 145 (2018)

    Article  Google Scholar 

  2. D Zhang, L Men and Q Chen, Sensors 11, 5360 (2011)

    Article  Google Scholar 

  3. G Testa, G Persichetti and R Bernini, Sensors 15, 465 (2015)

    Article  Google Scholar 

  4. I Choi, Y S Huh and D Erickson, Lab Chip 11, 632 (2011)

    Article  Google Scholar 

  5. T Dallas and P K Dasgupta, Trends Anal. Chem. 23, 1 (2004)

    Article  Google Scholar 

  6. D B Wolfe, R S Conroy, P Garstecki, B T Mayers, M A Fischbach, K E Paul, M Prentiss and G M Whitesides, Proc. Natl. Acad. Sci. 101, 12434 (2004), PubMed: 15314232

    Article  ADS  Google Scholar 

  7. D B Wolfe, D V Vezenov, B T Mayers, G M Whitesides, R S Conroy and M G Prentiss, Appl. Phys. Lett. 87, 181105 (2005)

    Article  ADS  Google Scholar 

  8. S Campopiano, R Bernini, L Zeni and P M Sarro, Opt. Lett. 29, 1894 (2004)

    Article  ADS  Google Scholar 

  9. M Skorobogatiy, J. Sensors 2009, 1 (2009)

    Article  Google Scholar 

  10. A Dupuis, K Stoeffler, B Ung, C Dubois and M Skorobogatiy, J. Opt. Soc. Am. B 28, 896 (2011)

    Article  ADS  Google Scholar 

  11. E Pone, C Dubois, N Guo, Y Gao, A Dupuis, F Boismenu, S Lacroix and M Skorobogatiy, Opt. Express 14, 5838 (2006)

    Article  ADS  Google Scholar 

  12. H Qu and M Skorobogatiy, Sensors Actuators B 161, 261 (2012)

    Article  Google Scholar 

  13. P Yeh, A Yariv and C S Hong, J. Opt. Soc. Am. 67, 423 (1977)

    Article  ADS  Google Scholar 

  14. P Yeh, A Yariv and E Marom, J. Opt. Soc. Am. 68, 1196 (1978)

    Article  ADS  Google Scholar 

  15. B Temelkuran, S D Hart, G Benoit, J D Joannopoulos and Y Fink, Nature 420, 650 (2002)

    Article  ADS  Google Scholar 

  16. K Kuriki, O Shapira, S Hart, G Benoit, Y Kuriki, J Viens, M Bayindir, J Joannopoulos and Y Fink, Opt. Express 12, 1510 (2004)

    Article  ADS  Google Scholar 

  17. D Joannopoulos, S G Johnson, J N Winn and R D Meade, Photonic crystals: Molding the flow of light (Princeton University Press, 2008)

    Book  Google Scholar 

  18. P Yeh, Optical waves in layered media (John Wiley & Sons Inc., 2005)

    Google Scholar 

  19. K J Rowland, S Afshar, V A Stolyarov, Y Fink and T M Monro, Opt. Express 20, 48 (2012)

    Article  ADS  Google Scholar 

  20. F E Ozturk, A Yildirim, M Kanik and M Bayindir, Appl. Phys. Lett. 105, 071102 (2014)

    Article  ADS  Google Scholar 

  21. R K Chourasia and V Singh, Superlatt. Microstruct. 116, 191 (2018)

    Article  ADS  Google Scholar 

  22. R K Chourasia, C S Yadav, A Upadhyay, N K Chourasia and V Singh, Optik 204, 164198 (2020)

    Article  ADS  Google Scholar 

  23. R K Chourasia and V Singh, Int. Conf. Fibre Opt. Photon. Th3A. 75 (2016).

  24. R K Chourasia, S Prasad and V Singh, Optik 169, 269 (2018)

    Article  ADS  Google Scholar 

  25. R K Chourasia, C S Yadav, A Upadhyay, N K Chourasia and V Singh, Optik 200, 163400 (2020)

    Article  ADS  Google Scholar 

  26. R K Chourasia and V Singh, IEEE Uttar Pradesh Section Int. Conference on Electrical, Computer and Electronics Engineering (UPCON) (2016) pp. 87–90

  27. R K Chourasia, S Prasad and V Singh, Opt. Quantum Electron. 48(12), 539 (2016)

    Article  Google Scholar 

  28. M A Kaliteevski, R A Abram, V V Nikolaev and G S Sokolovski, J. Mod. Opt. 46, 875 (1999)

    Article  ADS  Google Scholar 

  29. A H Cherin, An introduction to optical fibres (McGraw-Hill International, Tokyo, 1983)

    Google Scholar 

  30. M Born and E Wolf, Principles of optics (Cambridge, London, 1999)

  31. A W Snyder and J Love, Optical waveguide theory 2nd edn (Springer, 2008)

  32. M Skorobogatiy, Opt. Lett. 30, 2991 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or non-for-profit sectors. The authors acknowledge Dr Vivek Singh, Institute of Science, Department of Physics, BHU, Varanasi for his continuous valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kumar Chourasia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chourasia, N.K., Srivastava, A., Kumar, V. et al. Comparative performance study of liquid core cylindrical Bragg fibre waveguide biosensors. Pramana - J Phys 95, 9 (2021). https://doi.org/10.1007/s12043-020-02056-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02056-y

Keywords

PACS Nos

Navigation