Skip to main content
Log in

BN-Substituted non-classical fullerenes containing square rings

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We performed density functional calculations to investigate the electronic and magnetic properties of BN-substituted non-classical fullerenes. The substitutional structures, binding energies, energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), ionisation potentials, electron affinities, vibrational frequencies and nucleus-independent chemical shifts (NICS) were systematically investigated. The binding energies of the BN-substituted non-classical fullerenes were found to be slightly smaller than those obtained for pure non-classical fullerenes. While the reverse trend was observed for BN-substituted \(\hbox {C}_{46}\) and \(\hbox {C}_{32}\) fullerenes, it was found that the BN-substituted \(\hbox {C}_{62}\) fullerene has bigger ionisation potentials (IP) and smaller electron affinities (EA) than that of their parents. Because of low concentration of BN impurity, the IR spectra in the BN-substituted fullerenes are very similar to those of their parents, which can be considered as two separate regions: a low-frequency region at 200–1000 \(\text {cm}^{-1}\) corresponding to the out-of-plane bending and breathing modes and a high-frequency region at 1000–1800 \(\text {cm}^{-1}\) derived from the stretching of C–B, C–N, B–N and C–C bonds. It was shown that diatropic and paratropic ring currents of hexagons and pentagons together with the harshly antiaromatic character of the four-membered ring combine to produce a relatively small NICS at the centre of the \(\hbox {C}_{62}\) and \(\hbox {C}_{46}\) fullerene cages. The decrease in the antiaromatic and aromatic character of the \(\hbox {B}_{2}\hbox {N}_{2}\) ring and the adjacent hexagons affects the aromaticity character of the BN-substituted fullerenes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H W Kroto, Nature 329, 529 (1987)

    ADS  Google Scholar 

  2. E E B Campbell, P W Fowler, D Mitchell and F Zerbetto, Chem. Phys. Lett. 250, 544 (1996)

    ADS  Google Scholar 

  3. E Albertazzi, C Domene, P W Fowler, T Heine, G Seifert, C Van Alsenoy and F Zerbetto, Phys. Chem. Chem. Phys. 1, 2913 (1999)

    Google Scholar 

  4. S Diaz-Tendero, F Martin and M Alcami, Chem. Phys. Chem. 6, 92 (2005)

    Google Scholar 

  5. K Ziegler, A Mueller, K Y Amsharov and M Jansen, J. Am. Chem. Soc. 132, 17099 (2010)

    Google Scholar 

  6. Y-Z Tan, T Zhou, J Bao, G-J Shan, S Y Xie, R-B Huang and L-S Zheng, J. Am. Chem. Soc. 132, 17102 (2010)

    Google Scholar 

  7. Z Slanina, K Ishimura, K Kobayashi and S Nagase, Chem. Phys. Lett. 384, 114 (2004)

    ADS  Google Scholar 

  8. S Díaz-Tendero, M Alcamí and F Martín, Chem. Phys. Lett. 407, 153 (2005)

    ADS  Google Scholar 

  9. A R Khamatgalimov and V I Kovalenko, Russ. Chem. Rev. 85, 836 (2016)

    ADS  Google Scholar 

  10. Y D Gao and W C Herndon, J. Am. Chem. Soc. 115, 8459 (1993)

    Google Scholar 

  11. B I Dunlap and R Taylor, J. Phys. Chem. 98, 11018 (1994)

    Google Scholar 

  12. D Babić and N Trinajstić, Chem. Phys. Lett. 23, 239 (1995)

    Google Scholar 

  13. P W Fowler, T Heine, D Mitchell, G Orlandi, R Schmidt, G Seifert and F Zerbetto, J. Chem. Soc. Faraday Trans. 92, 2203 (1996)

    Google Scholar 

  14. P W Fowler, T Heine, D E Manolopoulos, D Mitchell, G Orlandi, R Schmidt, G Seifert and F Zerbetto, J. Phys. Chem. 100, 6984 (1996)

    Google Scholar 

  15. A Ayuela, P W Fowler, D Mitchell, R Schmidt, G Seifert and F Zerbetto, J. Phys. Chem. 100, 15634 (1996)

    Google Scholar 

  16. Y H Cui, D L Chen, W Q Tian and J K Feng, J. Phys. Chem. A 111, 7933 (2007)

    Google Scholar 

  17. X Zhao, Z Slanina, M Ozawa, E Osawa, P Deota and K Tanabe, Fullerene Sci. Technol. 8, 595 (2000)

    Google Scholar 

  18. W An, N Shao, S Bulusu and X C Zeng, J. Chem. Phys. 128, 084301 (2008)

    ADS  Google Scholar 

  19. L-H Gan, J-Q Zhao and F Pan, J. Mol. Struct. Theochem. 953, 24 (2010)

    Google Scholar 

  20. J Aihara, J. Chem. Soc. Faraday Trans. 91, 4349 (1995)

    Google Scholar 

  21. J An, L H Gan, X Fan and F Pan, Chem. Phys. Lett. 511, 351 (2011)

    ADS  Google Scholar 

  22. J Aihara, Internet Electron. J. Mol. Des. 2, 492 (2003)

    Google Scholar 

  23. R L Murry, D L Strout, G K Odom and G E Scuseria, Nature 366, 665 (1993)

    ADS  Google Scholar 

  24. E Hernandez, P Ordejon and H Terrones, Phys. Rev. B 63, 193403 (2001)

    ADS  Google Scholar 

  25. W Qian, S-C Chuang, R B Amador, T Jarrosson, M Sander, S Pieniazek, S I Khan and Y Rubin, J. Am. Chem. Soc. 125, 2066 (2003)

    Google Scholar 

  26. P A Troshin, A G Avent, A D Darwish, N Martsinovich, A K Abdul-Sada, J M Street and R Taylor, Science 309, 278 (2005)

    ADS  Google Scholar 

  27. I N Ioffe, C B Chen, S F Yang, L N Sidorov, E Kemnitz and S I Troyanov, Angew. Chem. Int. Edit. 49, 1 (2010)

    Google Scholar 

  28. T Guo, C Jin and R E Smalley, J. Phys. Chem. 95, 4948 (1991)

    Google Scholar 

  29. T Pradeep, V Vijayakrishnan, A K Santra and C N R Rao, J. Phys. Chem. 95, 10564 (1991)

    Google Scholar 

  30. J Averdung, H Luftmann, I Schlachter and J Mattay, Tetrahedron 51, 6977 (1995)

    Google Scholar 

  31. J Pavlovich, R Gonzalez, J C Hummelen, B Knight and F Wudl, Science 269, 1554 (1995)

    ADS  Google Scholar 

  32. T Nakamura, K Ishikawa, A Goto, M Ishihara, T Ohara and Y Koga, Diamond Relat. Mater. 12, 1908 (2003)

    ADS  Google Scholar 

  33. J Piechota, P Byzsewski, R Jablonski and K Antonova, Fullerene Sci. Technol. 4, 491 (1996)

    Google Scholar 

  34. T Nakamura, K Ishikawa, K Yamamoto, T Ohana, S Fujiwara and Y Koga, Phys. Chem. Chem. Phys. 1, 2631 (1999)

    Google Scholar 

  35. D Golberg, Y Bando, O Stephan, L Bourgeois, K Kurashima, T Sasaki, T Sato and C Goringe, J. Electron. Microsc. 48, 701 (1999)

    Google Scholar 

  36. T Nakamura, K Ishikawa, A Goto, M Ishihara, T Ohana and Y Koga, Diamond Relat. Mater. 10, 1228 (2001)

    ADS  Google Scholar 

  37. T Kar, J Pattanayak and S Scheiner, J. Phys. Chem. A 107, 8630 (2003)

    Google Scholar 

  38. F Liu, L Meng and S Zheng, J. Phys. Chem. B 110, 6666 (2006)

    Google Scholar 

  39. Z Chen, K Ma, L Chen, H Zhao, Y Pan, X Xao, A Tang and J Feng, J. Mol. Struct.: Theochem. 452, 219 (1998)

    Google Scholar 

  40. K Esfarjani, K Ohno and Y Kawazoe, Phys. Rev. B 50, 17830 (1994)

    ADS  Google Scholar 

  41. S H Xu, M Y Zhang, Y Zhao, B G Chen, J Zhang and C C Sun, Chem. Phys. Lett. 418, 297 (2006)

    ADS  Google Scholar 

  42. J Pattanayak, T Kar and S Scheiner, J. Phys. Chem. A 105, 8376 (2001)

    Google Scholar 

  43. J Pattanayak, T Kar and S Scheiner, J. Phys. Chem. A 106, 2970 (2002)

    Google Scholar 

  44. X Xu, Z Shang, G Wang, R Li, Z Cai and X Zhao, J. Phys. Chem. A 109, 3754 (2005)

    Google Scholar 

  45. C N Ramachandran and N Sathyamurthy, J. Phys. Chem. A 111, 6901 (2007)

    Google Scholar 

  46. R Ghafouri and M Anafcheh, J. Phys. Chem. Solids 73, 1378 (2012)

    ADS  Google Scholar 

  47. Y Zhao and D G Truhlar, Theor. Chem. Account. 120, 215 (2008)

    Google Scholar 

  48. M W Schmidt, K K Baldridge, J A Boatz, S T Elbert, M S Gordon, J H Jensen, S Koseki, N Matsunaga, K A Nguyen, S J Su, T L Windus, M Dupuis and J A Montgomery, J. Comput. Chem. 14, 1347 (1993)

    Google Scholar 

  49. B Napolion and Q L Williams, Chem. Phys. Lett. 490, 210 (2010)

    ADS  Google Scholar 

  50. P V R Schleyer, C Maerker, A Dransfeld, H Jiao and N J R V E Hommes, J. Am. Chem. Soc. 118, 6317 (1996)

    Google Scholar 

  51. Z Chen, C S Wannere, C Corminboeuf, R Puchta and P V R Schleyer, Chem. Rev. 105, 3842 (2005)

    Google Scholar 

  52. X Lu and Z Chen, Chem. Rev. 105, 3643 (2005)

    Google Scholar 

  53. M Bühl and A Hirsch, Chem. Rev. 101, 1153 (2001)

    Google Scholar 

  54. Z Chen, H Jiao, A Hirsch and W Thiel, J. Org. Chem. 66, 3380 (2001)

    Google Scholar 

  55. Z Chen, H Jiao, M Buhl, A Hirsch and W Thiel, Theor. Chem. Acc. 106, 352 (2001)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Research Council of Alzahra University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Anafcheh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anafcheh, M., abolfathi, Z. & Zahedi, M. BN-Substituted non-classical fullerenes containing square rings. Pramana - J Phys 95, 18 (2021). https://doi.org/10.1007/s12043-020-02042-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02042-4

Keywords

PACS Nos

Navigation