Skip to main content
Log in

Anisotropic flow of photons in relativistic heavy ion collisions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Electromagnetic radiations are one of the potential probes to study the initial state of the hot and dense quark-gluon plasma (QGP) produced during the collision of heavy nuclei at relativistic energies. Photons are emitted throughout the lifetime of the evolving system and carry undistorted information from the production point to the detector. The observation of large anisotropic flow of charged particles provides a strong confirmation of QGP formation and collective behaviour of the produced matter in these collisions. However, the theoretical model calculations which explain the hadronic spectra and anisotropic flow successfully, underpredict the experimental data of elliptic as well as triangular flow of photons by a large margin. This discrepancy between data and theory results is known as direct photon puzzle. In this article, we review the anisotropic flow of photons calculated using hydrodynamical model framework for different collision systems and beam energies. In addition, we propose some new ideas which can be valuable for understanding direct photon puzzle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. J W Harris and B Muller, Ann. Rev. Nucl. Part. Sci. 46, 71 (1996)

    Article  ADS  Google Scholar 

  2. E Shuryak, Rev. Mod. Phys. 89, 035001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. K Yagi, T Hatsuda and Y Miake, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 23, 1 (2005)

    Google Scholar 

  4. STAR Collaboration: C Adler et al, Phys. Rev. Lett. 87, 182301 (2001)

  5. STAR Collaboration: C Adler et al, Phys. Rev. Lett. 89, 132301 (2002)

  6. STAR Collaboration: C Adler et al, Phys. Rev. Lett. 90, 032301 (2003)

  7. PHENIX Collaboration: S S Adler et al, Phys. Rev. Lett. 91, 182301 (2003)

  8. P F Kolb, J Sollfrank and U W Heinz, Phys. Rev. C 62, 054909 (2000)

    Article  ADS  Google Scholar 

  9. D Teaney, J Lauret and E Shuryak, nucl-th/0110037

  10. P Huovinen, P F Kolb, U W Heinz, P V Ruuskanen and S A Voloshin, Phys. Lett. B 503, 58 (2001)

    Article  ADS  Google Scholar 

  11. K J Eskola, H Honkanen, H Niemi, P V Ruuskanen and S S Rasanen, Phys. Rev. C 72, 044904 (2005)

    Article  ADS  Google Scholar 

  12. P Huovinen and P V Ruuskanen, Ann. Rev. Nucl. Part. Sci. 56, 163 (2006)

    Article  ADS  Google Scholar 

  13. C Nonaka and S A Bass, Phys. Rev. C 75, 014902 (2007)

    Article  ADS  Google Scholar 

  14. P Romatschke and U Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

    Article  ADS  Google Scholar 

  15. C Gale, S Jeon and B Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013)

    Article  ADS  Google Scholar 

  16. U Heinz and R Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013)

    Article  ADS  Google Scholar 

  17. P Kolb and U Heinz, nucl-th/0305084 (2003)

  18. P V Ruuskanen, Nucl. Phys. A 544, 169 (1992)

    Article  ADS  Google Scholar 

  19. J I Kapusta, P Lichard and D Seibert, Phys. Rev. D 44, 2774 (1991); Erratum, Phys. Rev. D 47, 4171 (1993)

  20. J Alam, B Sinha and S Raha, Phys. Rep. 273, 243 (1996)

    Article  ADS  Google Scholar 

  21. W Cassing and E L Bratkovskaya, Phys. Rep. 308, 65 (1999)

    Article  ADS  Google Scholar 

  22. T Peitzmann and M H Thoma, Phys. Rep. 364, 175 (2002)

    Article  ADS  Google Scholar 

  23. P Stankus, Ann. Rev. Nucl. Part. Sci. 55, 517 (2005)

    Article  ADS  Google Scholar 

  24. D K Srivastava, J. Phys. G 35, 104026 (2008)

    Article  ADS  Google Scholar 

  25. C Shen, U W Heinz, J F Paquet and C Gale, Phys. Rev. C 89(4), 044910 (2014)

    Article  ADS  Google Scholar 

  26. J F Paquet, Nucl. Phys. A 967, 184 (2017)

    Article  ADS  Google Scholar 

  27. C Gale, Proc. Sci. High-pT2017, 023 (2019)

  28. G David, arXiv:1907.08893 [nucl-ex]

  29. R Chatterjee, L Bhattacharya and D K Srivastava, Lect. Notes Phys. 785, 219 (2010)

    Article  ADS  Google Scholar 

  30. WA98 Collaboration: M M Aggarwal et al, nucl-ex/0006007

  31. WA98 Collaboration: M M Aggarwal et al, Phys. Rev. Lett. 85, 3595 (2000)

  32. PHENIX Collaboration: S S Adler et al, Phys. Rev. Lett. 94, 232301 (2005)

  33. PHENIX Collaboration: S S Adler et al, Phys. Rev. C 76, 034904 (2007)

  34. PHENIX Collaboration: A Adare et al, Phys. Rev. Lett. 104, 132301 (2010)

  35. PHENIX Collaboration: S Bathe, Eur. Phys. J. C 49, 225 (2007)

  36. C Y Wong, Introduction of high energy heavy ion collisions (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  37. R Chatterjee, D K Srivastava, U W Heinz and C Gale, Phys. Rev. C 75, 054909 (2007)

    Article  ADS  Google Scholar 

  38. L E Gordon and W Vogelsang, Phys. Rev. D 50, 1901 (1994)

    Article  ADS  Google Scholar 

  39. P Aurenche, M Fontannaz, J-P Guillet, B Kniehl, E Pilon and M Werlen, Eur. Phys. J. C 9, 107 (1999)

    Article  ADS  Google Scholar 

  40. S Jeon, J Jalilian-Marian and I Sarcevic, Nucl. Phys. A 715, 795 (2003)

    Article  ADS  Google Scholar 

  41. P Aurenche, J-P Guillet, E Pilon and M Werlen, Phys. Rev. D 73, 094007 (2006)

    Article  ADS  Google Scholar 

  42. F Arleo, J. High Energy Phys. 0609, 015 (2006)

    Article  ADS  Google Scholar 

  43. PHENIX Collaboration: T Isobe, J. Phys. G 34, S1015 (2007)

  44. F Arleo et al, arXiv:hep-ph/0311131

  45. J C Collins, D E Soper and G Sterman, Nucl. Phys. B 261, 104 (1985)

    Article  ADS  Google Scholar 

  46. R D Field, Applications of perturbative QCD (Addison-Wesley Publishing Company, Reading, MA, 1989)

    Google Scholar 

  47. R J Fries, B Muller and D K Srivastava, Phys. Rev. Lett. 90, 132301 (2003)

    Article  ADS  Google Scholar 

  48. P Arnold, G D Moore and L G Yaffe, J. High Energy Phys. 0112, 009 (2001)

    Article  ADS  Google Scholar 

  49. J Ghiglieri, J Hong, A Kurkela, E Lu, G D Moore and D Teaney, J. High Energy Phys. 1305, 010 (2013)

    Article  ADS  Google Scholar 

  50. R Chatterjee, D K Srivastava and T Renk, Phys. Rev. C 94(1), 014903 (2016); R Chatterjee, D K Srivastava and T Renk, Nucl. Phys. A 931, 670 (2014)

  51. L Xiong, E V Shuryak and G E Brown, Phys. Rev. D 46, 3798 (1992)

    Article  ADS  Google Scholar 

  52. C Song, Phys. Rev. C 47, 2861 (1993)

    Article  ADS  Google Scholar 

  53. J Alam, P Roy and S Sarkar, Phys. Rev. C 68, 031901 (2003)

    Article  ADS  Google Scholar 

  54. J Alam, S Sarkar, P Roy, T Hatsuda and B Sinha, Ann. Phys. 286, 159 (2001)

    Article  ADS  Google Scholar 

  55. S Turbide, R Rapp and C Gale, Phys. Rev. C 69, 014903 (2004)

    Article  ADS  Google Scholar 

  56. M Heffernan, P Hohler, R Rapp, Phys. Rev. C 91, 027902 (2015)

    Article  ADS  Google Scholar 

  57. H van Hees, M He and R Rapp, Nucl. Phys. A 933, 256 (2015)

    Article  ADS  Google Scholar 

  58. R Chatterjee, E S Frodermann, U Heinz and D K Srivastava, Phys. Rev. Lett. 96, 202302 (2006)

    Article  ADS  Google Scholar 

  59. U W Heinz, R Chatterjee, E S Frodermann, C Gale and D K Srivastava, Nucl. Phys. A 783, 379 (2007)

    Article  ADS  Google Scholar 

  60. R S Bhalerao, arXiv:1404.3294

  61. R Chatterjee, Consequences of elliptic flow in relativistic heavy ion collision, Ph.D. thesis (University of Calcutta, 2010)

  62. R Chatterjee and D K Srivastava, Phys. Rev. C 79, 021901(R) (2009); R Chatterjee and D K Srivastava, Nucl. Phys. A 830, 503c (2009)

  63. R Chatterjee, D K Srivastava, U Heinz, arXiv:0901.3270 [nucl-th]

  64. F Cooper and G Frye, Phys. Rev. D 10, 186 (1974)

    Article  ADS  Google Scholar 

  65. R Chatterjee, D K Srivastava and S Jeon, Phys. Rev. C 79, 034906 (2009); C Gale, R Chatterjee, D K Srivastava and S Jeon, Nucl. Phys. A 830, 579 (2009)

  66. S Turbide, C Gale, E Frodermann and U Heinz, Phys. Rev. C 77, 024909 (2008)

    Article  ADS  Google Scholar 

  67. PHENIX Collaboration: A Adare et al, Phys. Rev. Lett. 109, 122302 (2012)

  68. H Holopainen, S S Rasanen and K J Eskola, Phys. Rev. C 84, 064903 (2011)

    Article  ADS  Google Scholar 

  69. H V Hees, M He and R Rapp, Nucl. Phys. A 933, 256 (2015)

    Article  ADS  Google Scholar 

  70. K Dusling, Nucl. Phys. A 839, 70 (2010)

    Article  ADS  Google Scholar 

  71. M Dion, J-F Paquet, B Schenke, C Young, S Jeon and C Gale, Phys. Rev. C 84, 064901 (2011)

    Article  ADS  Google Scholar 

  72. C Shen, U W Heinz, J F Paquet and C Gale, Phys. Rev. C 89, 044910 (2014)

    Article  ADS  Google Scholar 

  73. C Shen, U Heinz, J-F Paquet, I Kozlov and C Gale, Phys. Rev. C 91, 024908 (2015)

    Article  ADS  Google Scholar 

  74. H van Hees, C Gale and R Rapp, Phys. Rev. C 84, 054906 (2011)

    Article  ADS  Google Scholar 

  75. O Linnyk, W Cassing and E L Bratkovskaya, Phys. Rev. C 89, 034908 (2014)

    Article  ADS  Google Scholar 

  76. F-M Liu and S-X Liu, Phys. Rev. C 89, 034906 (2014)

    Article  ADS  Google Scholar 

  77. C Gale, Y Hidaka, S Jeon, S Lin, J-F Paquet, R D Pisarski, D Satow, V V Skokov and G Vujanovic, Phys. Rev. Lett. 114, 072301 (2015)

    Article  ADS  Google Scholar 

  78. B Muller, S-Y Wu and D-L Yang, Phys. Rev. D 89, 026013 (2014)

    Article  ADS  Google Scholar 

  79. A Monnai, Phys. Rev. C 90, 021901 (2014)

    Article  ADS  Google Scholar 

  80. L McLerran and B Schenke, Nucl. Phys. A 929, 71 (2014); L McLerran and B Schenke, Nucl. Phys. A 946, 158 (2016)

  81. M Greif, F Senzel, H Kremer, K Zhou, C Greiner and Z Xu, Phys. Rev. C 95, 054903 (2017)

    Article  ADS  Google Scholar 

  82. I Iatrakis, E Kiritsis, C Shen and D-L Yang, J. High Energy Phys. 04, 035 (2017)

    Article  ADS  Google Scholar 

  83. V Vovchenko, Iu A Karpenko, M I Gorenstein, L M Satarov, I N Mishustin, B Kampfer and H Stoecker, Phys. Rev. C 94, 024906 (2016)

  84. J-F Paquet, C Shen, G S Denicol, M Luzum, B Schenke, S Jeon and C Gale, Phys. Rev. C 93, 044906 (2016)

    Article  ADS  Google Scholar 

  85. PHENIX Collaboration: A Adare et al, Phys. Rev. C 91, 064904 (2015)

  86. M Wilde for the ALICE Collaboration, Nucl. Phys. A 904–905, 573c (2013); ALICE Collaboration: J Adam et al, Phys. Lett. B 754, 235 (2016)

  87. PHENIX Collaboration: A Adare et al, Phys. Rev. C 94, 064901 (2016)

  88. D Lohner for the ALICE Collaboration, J. Phys. Conf. Ser. 446, 012028 (2013)

  89. H Holopainen, H Niemi and K Eskola, Phys. Rev. C 83, 034901 (2011)

    Article  ADS  Google Scholar 

  90. B Schenke, P Tribedy and R Venugopalan, Phys. Rev. Lett. 108, 252301 (2012)

    Article  ADS  Google Scholar 

  91. U Heinz, Z Qiu and C Shen, Phys. Rev. C 87, 034913 (2013)

    Article  ADS  Google Scholar 

  92. C E Coleman-Smith, H Petersen and R L Wolpert, J. Phys. G 40, 095103 (2013)

    Article  ADS  Google Scholar 

  93. P Sorensen, J. Phys. G 37, 094011 (2010)

    Article  ADS  Google Scholar 

  94. J Takahashi et al, Phys. Rev. Lett. 103, 242301 (2009)

    Article  ADS  Google Scholar 

  95. B Alver and G Roland, Phys. Rev. C 81, 054905 (2010)

    Article  ADS  Google Scholar 

  96. PHENIX Collaboration: A Adare et al, Phys. Rev. Lett. 107, 252301 (2011)

  97. Z Qiu, C Shen and U Heinz, Phys. Lett. B 707, 151 (2012)

    Article  ADS  Google Scholar 

  98. ATLAS Collaboration: G Aad et al, Phys. Rev. C 86 014907 (2012)

  99. R Chatterjee, H Holopainen, T Renk and K J Eskola, Phys. Rev. C 83, 054908 (2011): R Chatterjee, H Holopainen, T Renk and K J Eskola, J. Phys. G. Nucl. Part. Phys. 38, 124136 (2011)

  100. C Loizides, J Kamin and D d’Enterria, Phys. Rev. C 97, 054910 (2018)

    Article  ADS  Google Scholar 

  101. R Chatterjee, H Holopainen, I Helenius, T Renk and K J Eskola, Phys. Rev. C 88, 034901 (2013)

    Article  ADS  Google Scholar 

  102. K J Eskola, K Kajantie, P V Ruuskanen and K Tuominen, Nucl. Phys. B 570, 379 (2000)

    Article  ADS  Google Scholar 

  103. M Laine and Y Schroder, Phys. Rev. D 73, 085009 (2006)

    Article  ADS  Google Scholar 

  104. R Chatterjee, H Holopainen, T Renk and K J Eskola, Phys. Rev. C 85, 064910 (2012); R Chatterjee, H Holopainen, T Renk and K J Eskola, arXiv:1207.6917

  105. R Chatterjee, P Dasgupta and D K Srivastava, Phys. Rev. C 96(1), 014911 (2017)

    Article  ADS  Google Scholar 

  106. H Niemi, G S Denicol, H Holopainen and P Huovinen, Phys. Rev. C 87, 054901 (2013)

    Article  ADS  Google Scholar 

  107. O Linnyk, V P Konchakovski, W Cassing and E L Bratkovskaya, Phys. Rev. C 88, 034904 (2013)

    Article  ADS  Google Scholar 

  108. A Monnai, arXiv:1907.09266 [nucl-th]

  109. A Adare et al, Phys. Rev. C 98, 054902 (2018)

    Article  ADS  Google Scholar 

  110. CMS Collaboration: S Chatrchyan et al, Phys. Lett. B 724, 213 (2013); CMS Collaboration: S Chatrchyan et al, Eur. Phys. J. C 74, 2847 (2014)

  111. PHENIX Collaboration: A Adare et al, Phys. Rev. Lett. 114, 192301 (2015)

  112. PHENIX Collaboration: A Adare et al, Phys. Rev. Lett. 115, 142301 (2015)

  113. C Shen, J F Paquet, G S Denicol, S Jeon and C Gale, Phys. Rev. C 95(1), 014906 (2017)

    Article  ADS  Google Scholar 

  114. P Dasgupta, R Chatterjee and D K Srivastava, J. Phys. G 47(8), 085101 (2020), arXiv:1901.04943 [nucl-th]

  115. STAR Collaboration: L Adamczyk et al, Phys. Rev. Lett. 118(1), 012301 (2017)

  116. CERN FCC web site, http://fcc.web.cern.ch

  117. N Armesto, A Dainese, D dEnterria, S Masciocchi, C Roland, C Salgado, M van Leeuwen and U Wiedemann, Nucl. Phys. A 931, 163 (2014)

  118. A Dainese et al, arXiv:1605.01389; N Armesto et al, Nucl. Phys. A 956, 854 (2016)

  119. P Dasgupta, S De, R Chatterjee and D K Srivastava, Phys. Rev. C 98, 024911 (2018)

    Article  ADS  Google Scholar 

  120. P M Nadolsky et al, Phys. Rev. D 78, 013004 (2008)

    Article  ADS  Google Scholar 

  121. L Bourhis, M Fontannaz and J P Guillet, Eur. Phys. J. C 2, 529 (1998)

    Article  ADS  Google Scholar 

  122. STAR Collaboration: L Adamczyk et al, Phys. Rev. Lett. 115, 222301 (2015)

  123. U Heinz and A Kuhlman, Phys. Rev. Lett. 94, 132301 (2005)

    Article  ADS  Google Scholar 

  124. A Kuhlman and U Heinz, Phys. Rev. C 72, 037901 (2005)

    Article  ADS  Google Scholar 

  125. C Nepali, G Fai and D Keane, Phys. Rev. C 73, 034911 (2006)

    Article  ADS  Google Scholar 

  126. C Nepali, G I Fai and D Keane, Phys. Rev. C 76, 051902 (2007); Erratum, Phys. Rev. C 76, 069903 (2007)

  127. B Schenke, P Tribedy and R Venugopalan, Phys. Rev. C 89, 064908 (2014)

    Article  ADS  Google Scholar 

  128. A Goldschmidt, Z Qiu, C Shen and U Heinz, Phys. Rev. C 92, 044903 (2015)

    Article  ADS  Google Scholar 

  129. P Dasgupta, R Chatterjee and D K Srivastava, Phys. Rev. C 95, 064907 (2017)

    Article  ADS  Google Scholar 

  130. S Chatterjee, S K Singh, S Ghosh, Md Hasanujjaman, J Alam and S Sarkar, Phys. Lett. B 758, 269 (2016)

  131. S Ghosh, S K Singh, S Chatterjee, J Alam and S Sarkar, Phys. Rev. C 93, 054904 (2016)

    Article  ADS  Google Scholar 

  132. P Dasgupta, R Chatterjee, S K Singh and J E Alam, Phys. Rev. C 97(3), 034902 (2018)

    Article  ADS  Google Scholar 

  133. K Tuchin, Adv. High Energy Phys. 2013, 490495 (2013)

    Article  MathSciNet  Google Scholar 

  134. R K Mohapatra, P S Saumia and A M Srivastava, Mod. Phys. Lett. A 26, 2477 (2011)

    Article  ADS  Google Scholar 

  135. X G Deng and Y G Ma, Eur. Phys. J. A 54(11), 204 (2018)

    Article  ADS  Google Scholar 

  136. B G Zakharov, Eur. Phys. J. C 76(11), 609 (2016)

    Article  ADS  Google Scholar 

  137. H-J Xu, Q Wang and L Pang, Phys. Rev. C 89, 064902 (2014)

    Article  ADS  Google Scholar 

  138. STAR Collaboration: F Geurts, J. Phys. Conf. Ser. 458, 012016 (2013)

Download references

Acknowledgements

RC thanks Prof. D K Srivastava, Dr Pingal Dasgupta and Dr Somnath De for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupa Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, R. Anisotropic flow of photons in relativistic heavy ion collisions. Pramana - J Phys 95, 15 (2021). https://doi.org/10.1007/s12043-020-02038-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02038-0

Keywords

PACS Nos

Navigation