Skip to main content
Log in

Second law analysis of MHD third-grade fluid flow through the microchannel

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The present study analyses the phenomena of entropy generation of magneto third-grade fluid flow through the microchannel. The significance of Joule heating, viscous heating and internal heat source is also scrutinised. The non-dimensional forms of the corresponding governing equations of the physical phenomenon with the associated boundary conditions for third-grade fluid flow and heat transfer has been solved using finite element method. The impact of various parameters on the flow and heat transfer behaviour, entropy generation and Bejan number is explained using graphs. The obtained results are examined through the plots. The results showed that an increase in the fluid parameter reduces the activity of the fluid flow and, as a result, the temperature is diminished. An enhancement in fluid motion and temperature is obtained by increasing the viscosity index. We noted that the effect of Hartmann number on the rate of local entropy generation and Bejan number is sinusoidal in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G M Mala, D Li and J D Dale. Int. J. Heat Mass Transf. 40(13), 3079 (1997)

    Article  Google Scholar 

  2. C K Chen and H C Weng, J. Heat Transfer 127(9), 1053 (2005)

    Article  Google Scholar 

  3. L B Erbay, M M Yalçın and M Ş Ercan, Heat Mass Transfer 43(8), 729 (2007)

    Article  ADS  Google Scholar 

  4. M Sheikholeslami, M Gorji-Bandpy, D D Ganji and S Soleimani, Adv. Powder Technol. 24(6), 980 (2013)

    Article  Google Scholar 

  5. A Malvandi and D D Ganji, Int. J. Therm. Sci. 84, 196 (2014)

    Article  Google Scholar 

  6. F Hedayati and G Domairry, Powder Technol. 272, 250 (2015)

    Article  Google Scholar 

  7. B K Jha and B Aina, Ain Shams Eng. J. 9, 747 (2016)

    Article  Google Scholar 

  8. N S Shashikumar, B J Gireesha, B Mahanthesh, B C Prasannakumara and A J Chamkha, Int. J. Numer. Meth. Heat Fluid Flow, https://doi.org/10.1108/HFF-06-2018-0301 (2018)

  9. A Karimipour, A D’Orazio and M S Shadloo, Physica E 86, 146 (2017)

    Article  ADS  Google Scholar 

  10. N S Shashikumar, B C Prasannakumara, B J Gireesha and O D Makinde, Thermodynamics analysis of MHD Casson fluid slip flow in a porous microchannel with thermal radiation. in: Diffusion foundations (Trans Tech Publications, 2018) Vol. 16, pp. 120–139

    Article  Google Scholar 

  11. N S Shashikumar, B J Gireesha, B Mahanthesh and B C Prasannakumara, Multidiscip. Model. Mater. Struct. 14(4), 769 (2018)

    Article  Google Scholar 

  12. S R Hosseini, M Sheikholeslami, M Ghasemian and D D Ganji, Powder Technol. 324, 36 (2018)

    Article  Google Scholar 

  13. A Arabpour, A Karimipour and D Toghraie, J. Therm. Anal. Calor. 131(2), 1553 (2018)

    Article  Google Scholar 

  14. N S Shashikumar, B C Prasannakumara, M Archana and B J Gireesha, J. Nanofluids 8(1), 63 (2019)

    Article  Google Scholar 

  15. M Madhu, N S Shashikumar, B Mahanthesh, B J Gireesha and N Kishan, Appl. Math. Mech. 40(9), 1285 (2019)

    Article  MathSciNet  Google Scholar 

  16. M Madhu, N S Shashikumar, B J Gireesha and N Kishan, Phys. Scr. 94(12), 125 (2019)

    Article  Google Scholar 

  17. N S Shashikumar, M Macha, B J Gireesha and N Kishan, Multidiscip. Model. Mater. Struct. (2020)

    Google Scholar 

  18. A Bejan, Second-law analysis in heat transfer and thermal design, in: Advances in heat transfer (Elsevier, 1982) Vol. 15, pp. 1–58

  19. G Ibáñez and S Cuevas, Energy 35(10), 4149 (2010)

    Article  Google Scholar 

  20. S Das and R N Jana, Ain Shams Eng. J. 5(2), 575 (2014)

    Article  Google Scholar 

  21. G Ibáñez, Int. J. Heat Mass Transf. 80, 274 (2015)

    Article  Google Scholar 

  22. G M Rashed, J. Appl. Math., https://doi.org/10.1155/2016/1748312 (2016)

  23. M Abbaszadeh, A Ababaei, A A A Arani and A A Sharifabadi, J. Braz. Soc. Mech. Sci. Eng. 39(3), 775 (2017)

    Article  Google Scholar 

  24. A A Khan, F Zaib and A Zaman, J. Braz. Soc. Mech. Sci. Eng. 39(12), 5027 (2017)

    Article  Google Scholar 

  25. T Hayat, M I Khan, T A Khan, M I Khan, S Ahmad and A Alsaedi, J. Mol. Liquids 265(1), 629 (2018)

    Article  Google Scholar 

  26. S Qayyum, M I Khan, T Hayat, A Alsaedi and M Tamoor, Int. J. Heat Mass Transf. 127, 933 (2018)

    Article  Google Scholar 

  27. M F Javed, M Waqas, M I Khan, N B Khan, R Muhammad, M U Rehman, S W Khan and M T Hassan, Appl. Nanosci. 10, 3011 (2020)

    Article  Google Scholar 

  28. M Kumar, G J Reddy and N Dalir, Pramana – J. Phys. 91(5): 60 (2018)

    Google Scholar 

  29. Z Iqbal, Z Mehmood and B Ahmad, Pramana – J. Phys. 90(5): 64 (2018)

    Google Scholar 

  30. T Hayat, M Kanwal, S Qayyum, M I Khan and A Alsaedi, Pramana – J. Phys. 93(4): 54 (2019)

    Google Scholar 

  31. T Hayat, F Masood, S Qayyum and A Alsaedi, Pramana – J. Phys. 93(6): 96 (2019)

    Google Scholar 

  32. T Hayat, R Ellahi, P D Ariel and S Asghar, Nonlinear Dynam. 45(1–2), 55 (2006)

    Article  MathSciNet  Google Scholar 

  33. M Sajid and T Hayat, Trans. Porous Media 71(2), 173 (2008)

    MathSciNet  Google Scholar 

  34. R Ellahi, T Hayat, F M Mahomed and S Asghar, Nonlinear Anal.: Real World Appl. 11(1), 139 (2010)

    Article  MathSciNet  Google Scholar 

  35. Y M Aiyesimi, G T Okedayo and O W Lawal, Math. Theory Model 2(9), https://www.iiste.org/Journals/index.php/MTM/article/view/2789 (2012)

  36. I G Baoku, B I Olajuwon and A O Mustapha, Int. J. Heat Fluid Flow 40, 81 (2013)

    Article  Google Scholar 

  37. M K Nayak, G C Dash and L P Singh, Int. J. Heat Mass Transf. 79, 1087 (2014)

    Article  Google Scholar 

  38. A W Ogunsola and B A Peter, Int. J. Pure Appl. Sci. Tech. 22(1), 1 (2014)

    Google Scholar 

  39. M M Rashidi, S Bagheri, E Momoniat and N Freidoonimehr, Ain Shams Eng. J. 8(1), 77 (2017)

    Article  Google Scholar 

  40. S O Adesanya, J A Falade, S Jangili and O A Beg, Alex. Eng. J. 56(1), 153 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Macha Madhu) acknowledges the UGC for financial support under the Dr. D.S. Kothari Postdoctoral Fellowship Scheme (No. F.4-2/2006 (BSR)/MA/16-17/0043). The authors extend their sincere thanks to the editor and referees of the journal, for their valuable suggestions to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N S Shashikumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhu, M., Shashikumar, N.S., Gireesha, B.J. et al. Second law analysis of MHD third-grade fluid flow through the microchannel. Pramana - J Phys 95, 4 (2021). https://doi.org/10.1007/s12043-020-02037-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02037-1

Keywords

PACS Nos

Navigation