Exact solutions of a quantum system placed in a Kratzer potential and under a uniform magnetic field

Abstract

We propose Whittaker function approach as a theoretical method for finding exact solutions of a quantum mechanical system placed in the Kratzer potential. We then show that the effect of an external uniform magnetic field on this system can be satisfactorily determined using variational method. By following the one-step treatment suggested in this study, we increase the reliability and the accuracy of the solutions of Schrödinger equation for a quantum mechanical system placed in potential energy and perturbed by a uniform magnetic field that proves to be useful in modelling physical phenomena. We find that the achieved numerical and analytical results agree very well with those already published and those calculated using the Numerov method.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L A Gonalves and L S F Olavo, Ann. Phys. 380, 59 (2017)

    ADS  Google Scholar 

  2. 2.

    S Kamimoto, T Kawai and Y Takei, Adv. Math. 260, 565 (2014)

    MathSciNet  Google Scholar 

  3. 3.

    S Y Knyazev and E E Shcherbakova, Russ. Phys. J. 59, 1616 (2017)

    Google Scholar 

  4. 4.

    K Vlachos, V Papatheou and A Okopi, Can. J. Chem. 85, 13 (2007)

    Google Scholar 

  5. 5.

    H C Kim and J H Yee, Ann. Phys. 323, 1424 (2008)

    ADS  Google Scholar 

  6. 6.

    H Mutuk, Pramana – J. Phys. 92: 1 (2019)

    Google Scholar 

  7. 7.

    D A Nugraha, A Suparmi, C Cari and B N Pratiwi, J. Phys.: Conf. Ser. 820, 012014 (2017)

    Google Scholar 

  8. 8.

    N Al Sdran and F Maiz, AIP Adv. 6, 065323 (2016)

  9. 9.

    M Abusini, M Serhan, M F Al-Jamal, A Al-Jamel and E M Rabei, Pramana – J. Phys. 93: 93 (2019)

    Google Scholar 

  10. 10.

    L O V K Grover, Pramana – J. Phys. 56, 333 (2001)

    Google Scholar 

  11. 11.

    S A Khorram-Hosseini, S Zarrinkamar and H Panahi, Pramana – J. Phys. 92: 19 (2019)

    Google Scholar 

  12. 12.

    A Kratzer, Z. Phys. 3, 191 (1920)

    ADS  Google Scholar 

  13. 13.

    I Bayrak and O Boztosun, Int. J. Quant. Chem. 107, 1040 (2007)

    ADS  Google Scholar 

  14. 14.

    M Aygun, O Bayrak and I Boztosun, J. Phys. B 40, 537 (2007)

    ADS  Google Scholar 

  15. 15.

    C Berkdemir and J Han, Chem. Phys. Lett. 409, 203 (2005)

    ADS  Google Scholar 

  16. 16.

    J Bao and B D Shizgal, Comput. Theor. Chem. 1149, 49 (2019)

  17. 17.

    K R Purohit, R H Parmar and A K Rai, The Eur. Phys. J. Plus 286, 1 (2020)

    Google Scholar 

  18. 18.

    C P Onyenegecha, C A Onate, O K Echendu, A A Ibe and H Hassanabadi, The Eur. Phys. J. Plus 135, 382 (2020), https://doi.org/10.1140/epjp/s13360-020-00349-0

  19. 19.

    C O Edet and U S Okorie, Indian J. Phys. 94, 425 (2020)

  20. 20.

    N Kandirmaz, J. Math. Phys. 59, 063510 (2018)

    ADS  MathSciNet  Google Scholar 

  21. 21.

    H F Kisoglu and H Ciftci, Commun. Theor. Phys. 67, 350 (2017)

    ADS  Google Scholar 

  22. 22.

    H Ciftci and H F Kisoglu, Chin. Phys. B 25, 030201 (2016)

    Google Scholar 

  23. 23.

    I Petreska, T Sandev, G Ivanovski and L Pejov, Commun. Theor. Phys. 54, 138 (2010)

    ADS  Google Scholar 

  24. 24.

    D Bouaziz, Ann. Phys. 355, 269 (2015)

    ADS  Google Scholar 

  25. 25.

    J A Obu, P O Okoi and U S Okorie, Indian J. Phys. 51, 393 (2019), https://doi.org/10.1007/s12648-019-01638-w

  26. 26.

    M Heddar, Phys. Scr. 94, 125011 (2019)

    ADS  Google Scholar 

  27. 27.

    A Dehyar, G Rezaei and A Zamani, Physica E 84, 175 (2016)

    ADS  Google Scholar 

  28. 28.

    M Aygun, O Bayrak, I Boztosun and Y Sahin, Eur. Phys. J. D 66, 35 (2012)

    ADS  Google Scholar 

  29. 29.

    R Rani, S B Bhardwaj and F Chand, Pramana – J. Phys. 91: 46 (2018)

    Google Scholar 

  30. 30.

    F Hoseini, J K Saha and H Hassanabadi, Commun. Theor. Phys. 65, 695 (2016)

    ADS  Google Scholar 

  31. 31.

    J Sadeghi, Acta Phys. Polon. A 112, 23 (2007)

    ADS  Google Scholar 

  32. 32.

    C A Singh and O B Devi, Int. J. Quant. Chem. 106, 415 (2006)

    ADS  Google Scholar 

  33. 33.

    R A El-nabulsi, Eur. Phys. J. Plus 133, 277 (2018)

    Google Scholar 

  34. 34.

    A B Oliveira and K Bakke, Proc. R. Soc. A 472, 20150858 (2016)

    ADS  Google Scholar 

  35. 35.

    F M Fernández, J. Phys. A 37, 6173 (2004)

  36. 36.

    A J Sous, Am. J. Comput. Appl. Math. 8, 27 (2018)

    Google Scholar 

  37. 37.

    H Ciftci, R L Hall and N Saad, J. Phys. A 38, 1147 (2005)

    ADS  MathSciNet  Google Scholar 

  38. 38.

    T Barakat, Phys. Lett. A 344, 411 (2005)

    ADS  MathSciNet  Google Scholar 

  39. 39.

    P M Gaiki and P M Gade, Eur. J. Phys. 40, 015806 (2019)

    Google Scholar 

  40. 40.

    L A Gribov and N I Prokof’eva, J. Struct. Chem. 56, 752 (2015)

    Google Scholar 

  41. 41.

    K Wang, L Wang and J Yan, J. Des Mathematiques Pures et Appliquees 123, 167 (2019)

    Google Scholar 

  42. 42.

    R Borghi, Eur. J. Phys. 39, 035419 (2018)

    Google Scholar 

  43. 43.

    B Bin Mao, M Liu, W Wu, L Li, Z J Ying and H G Luo, Chin. Phys. B 27, 054219 (2018)

  44. 44.

    S Weis, Rep. Math. Phys. 82, 317 (2018)

    ADS  MathSciNet  Google Scholar 

  45. 45.

    D Bouaziz and M Bawin, Phys. Rev. A 89, 1 (2014)

    Google Scholar 

  46. 46.

    D Bouaziz and M Bawin, Phys. Rev. A 76, 1 (2007)

    Google Scholar 

  47. 47.

    D Bouaziz and T Birkandan, Ann. Phys. 387, 62 (2017)

    ADS  Google Scholar 

  48. 48.

    P A Becker, J. Math. Phys. 50, 123515 (2009)

    ADS  MathSciNet  Google Scholar 

  49. 49.

    N Khan, T Usman and M Ghayasuddin, Electron. J. Math. Anal. Appl. 4, 259 (2016)

    Google Scholar 

  50. 50.

    A Bagdasaryan, J. Math. Res. 2, 71 (2014)

  51. 51.

    N Dobashi, E Suzuki and S Watanabe, Cogent Math. 4, 1 (2017)

    Google Scholar 

  52. 52.

    J D Hey, M A Chaudhry and S M Zubair, J. Phys. B 50, 065701 (2017)

    ADS  Google Scholar 

  53. 53.

    A Eddington, Nature 120, 117 (1927), https://doi.org/10.1038/120117a0

  54. 54.

    D R Hartree, Math. Proc. Cambridge Philos. Soc. 24, 89 (1928)

    ADS  Google Scholar 

  55. 55.

    J Derezi and S Richard, Ann. Henri Poincare 19, 2869 (2018)

    ADS  MathSciNet  Google Scholar 

  56. 56.

    M A Chaudhry and S M Zubair, Appl. Math. Lett. 5, 25 (1992)

    MathSciNet  Google Scholar 

  57. 57.

    E T Whittaker and A G N Watson, A course of modern analysis 3rd edn (Cambridge University Press, London, 1920)

  58. 58.

    H F Kisoglu, Eur. Phys. J. Plus 134, 460 (2019)

    Google Scholar 

  59. 59.

    K Sogut and A Havare, Adv. High Energy Phys. 2014, 493120 (2014), https://doi.org/10.1155/2014/493120

  60. 60.

    A D Alhaidari, H Bahlouli and A Al-Hasan, Phys. Lett. A 349, 87 (2006)

    ADS  MathSciNet  Google Scholar 

  61. 61.

    N Ferkous and A Bounames, Commun. Theor. Phys. 59, 679 (2013)

    ADS  Google Scholar 

  62. 62.

    M Eshghi, H Mehraban and S M Ikhdair, Eur. Phys. J. A 52, 1 (2016)

    Google Scholar 

  63. 63.

    M Eshghi and H Mehraban, Eur. Phys. J. Plus 132, 121 (2017)

    Google Scholar 

  64. 64.

    O Bayrak, I Boztosun and H Ciftci, Int. J. Quant. Chem. 107, 540 (2007)

    ADS  Google Scholar 

  65. 65.

    P G Hajigeorgiou, J. Mol. Spectrosc. 235, 111 (2006)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F Maiz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maiz, F., Alqahtani, M.M. Exact solutions of a quantum system placed in a Kratzer potential and under a uniform magnetic field. Pramana - J Phys 94, 162 (2020). https://doi.org/10.1007/s12043-020-02035-3

Download citation

Keywords

  • Kratzer potential
  • variational method
  • Numerov method
  • energy eigenvalues
  • Landau problem
  • Whittaker functions

PACS Nos

  • 03.65.Ge
  • 31.15.xt
  • 03.65.Fd