Skip to main content
Log in

Analytical solution of the steady-state atmospheric fractional diffusion equation in a finite domain

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, an analytical solution for the steady-state fractional advection-diffusion equation was investigated to simulate the dispersion of air pollutants in a finite media. The authors propose a method that uses classic integral transform technique (CITT) to solve the transformed problem with a fractional derivative, resulting in a more general solution. We compare the solutions with data from real experiment. Physical consequences are discussed with the connections to generalised diffusion equations. In the wake of these analysis, the results indicate that the present solutions are in good agreement with those obtained in the literature. This report demonstrates that fractional equations have come of age as a decisive tool to describe anomalous transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P Wagle, T H Skaggs, P H Gowda, B K Northup and J P S Neel, Agric. For. Meteorol. 285, 107907 (2020)

    Article  ADS  Google Scholar 

  2. M J Schmidt, S D Pankavich and David A Benson, Adv. Water Resour. 117, 115 (2018)

    Article  ADS  Google Scholar 

  3. O C Acevedo, L Mahrt, F S Puhales, F D Costa, L E Medeiros and G A Degrazia, Q. J. R. Meteorol. Soc. 142(695), 693 (2016)

    Article  ADS  Google Scholar 

  4. M T Vilhena, D Buske and T Tirabassi, Atmos. Res. 92, 1 (2009)

    Article  Google Scholar 

  5. D Lu, A R Seadawy, M Arshad and J Wang, Res. Phys. 565, 1 (2017)

    Google Scholar 

  6. A R Seadawy, Physica A 455, 44 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. A R Seadawy, Physica A 439, 124 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. A R Seadawy, Comput. Math. Appl. 67, 172 (2014)

    Article  MathSciNet  Google Scholar 

  9. E S Selima, A R Seadawy and X Yao, Eur. Phys. J. Plus 131, 425 (2016)

    Article  Google Scholar 

  10. Y S Özkan, E Yaşar and A R Seadawy, J. Taibah Univ. Sci. 14, 585 (2020)

    Article  Google Scholar 

  11. H Ahmad, A R Seadawy, T A Khan and P Thounthong, J. Taibah Univ. Sci. 14, 346 (2020)

    Article  Google Scholar 

  12. P Kumar and M Sharan, Proc. R. Soc. A 466, 383 (2010)

    Article  ADS  Google Scholar 

  13. A Giusti, J. Math. Phys. 59, 013506 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. R S De Quadros, G A Gonçalves, D Buske and G J Weymar, Defect Diffus. Forum 396, 91 (2019)

    Article  Google Scholar 

  15. M Sharan and M Modani, Atmos. Environ. 40, 3469 (2006)

    Article  ADS  Google Scholar 

  16. E Demael and B C Carissimo, J. Appl. Meteorol. Climatol. 47, 888 (2008)

    Article  ADS  Google Scholar 

  17. P Kumar and M Sharan, Atmos. Res. 106, 30 (2012)

    Article  Google Scholar 

  18. M Sharan and P Kumar, Atmos. Environ. 43, 2268 (2009)

    Article  ADS  Google Scholar 

  19. D M Moreira, M T Villena, D Buske and T Tirabassi, Atmos. Res. 92, 1 (2009)

    Article  Google Scholar 

  20. A G Ulke, Int. J. Environ. Pollut. 55, 113 (2014)

    Article  Google Scholar 

  21. K S M Essa, S E M Elsaid and F Mubarak, J. Atmos. 1(2), 8 (2015)

    Article  Google Scholar 

  22. B Sportisse, Fund. Air Pollut. 1, 93 (2010)

    Google Scholar 

  23. P Kumar and M Sharan, Environ. Model. Assess. 19(6), 487 (2014)

    Article  Google Scholar 

  24. S K Singh, M Sharan and J P Issartel, Bound-Lay. Meteorol. 146(2), 277 (2013)

    Article  ADS  Google Scholar 

  25. S Wortmann, M T Vilhena, D M Moreira and D Buske, Atmos. Environ. 39, 2171 (2005)

    Article  ADS  Google Scholar 

  26. D A Benson, S Pankavich and D Bolster, Adv. Water Resour. 123, 40 (2019)

    Article  ADS  Google Scholar 

  27. A Giusti, Fract. Calc. Appl. Anal. 20(4), 854 (2017)

    Article  MathSciNet  Google Scholar 

  28. E Y Vitokhin and E A Ivanova, Contin. Mech. Therm. 29(6), 1219 (2017)

    Article  Google Scholar 

  29. S Vitali and F Mainardi, AIP Conf. Proc. 1836, 020004 (2017)

    Article  Google Scholar 

  30. B J West, Rev. Mod. Phys. 86, 1169 (2014)

    Article  ADS  Google Scholar 

  31. S Vitali, G Castellani and F Mainardi, Chaos Solitons Fractals 102, 467 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. I Podlubny, R L Magin and I Trymorush, Fract. Calc. Appl. Anal. 20(5), 1068 (2017)

    Article  MathSciNet  Google Scholar 

  33. I Podlubny, Fract. Calc. Appl. Anal. 22(6), 1502 (2019)

    Article  MathSciNet  Google Scholar 

  34. B Datsko, I Podlubny and Y Povstenko, Mathematics 7(5), 433 (2019); I Podlubny, Fract. Calc. Appl. Anal. 5, 367 (2002)

  35. J T Machado, F Mainardi and V Kiryakova, Fract. Calc. Appl. Anal. 18(2), 495 (2015)

    Article  MathSciNet  Google Scholar 

  36. X-J Yang, F Gao and H M Srivastava, Comput. Math. Appl. 73(2), 203 (2017)

    Article  MathSciNet  Google Scholar 

  37. X-J Yang, F Gao and H M Srivastava, J. Comput. Appl. Math. 339, 286 (2018)

    Article  Google Scholar 

  38. J T Machado, A M S F Galhano and J J Trujillo, Scientometrics (JCR) 98(1), 577 (2014)

    Article  Google Scholar 

  39. D Buske, B Bodmann, M T Vilhena and R S De Quadros, Am. J. Environ. Eng. 5(1A), 1 (2015)

    Google Scholar 

  40. R B Smith, Bound.-Lay. Meteorol. 139, 501 (2011)

    Article  ADS  Google Scholar 

  41. R Gorenflo, Y Luchko and M Yamamoto, Fract. Calc. Appl. Anal. 18(3), 799 (2015)

    Article  MathSciNet  Google Scholar 

  42. A Chechkin, F Seno, R Metzler and I M Sokolov, Phys. Rev. X 7(2), 021002 (2017)

    Google Scholar 

  43. R Gorenflo and F Mainardi, Appl. Phys. 45, 1 (2019)

    Google Scholar 

  44. R Gorenflo and F Mainardi, Appl. Phys. 99, 1 (2019)

    Google Scholar 

  45. V Kolokoltsov, Fract. Calc. Appl. Anal. 18(4), 1039 (2015)

    Article  MathSciNet  Google Scholar 

  46. E M Hernndez-Hernndez, V Kolokoltsov and L Toniazzi, Chaos Solitons Fractals 102, 184 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  47. R Gorenflo, F Mainardi and S V Rogosin, Handbook Fract. Calc. Appl. 1, 269 (2019)

    Google Scholar 

  48. D Buske, C Z Petersen, Quadros, G A Gonçalves and J Á Contreira, Ciência e Natura 38, 182 (2016)

  49. J F Gómez-Aguilar, M G López-López, V M Alvarado-Martínez, J Reyes-Reyes and M Adam-Medina, Physica A 447, 467 (2016)

  50. A Mathai, Linear Algebra Appl. 446, 196 (2014)

    Article  MathSciNet  Google Scholar 

  51. T A Dung, C T Hang and B T Long, Sci. Technol. Develop. 18, K4 (2015)

    Google Scholar 

  52. C Bhaskar, K Lakshminarayanachari and C Pandurangappa, Int. J. Res. Adv. Technol. 7(5), 2321 (2019)

    Google Scholar 

  53. A Kumar and P Goyal, Aerosol Air. Qual. Res. 14, 1487 (2014)

    Article  Google Scholar 

  54. V Zaburdaev, S Denisov and J Klafter, Rev. Mod. Phys. 87(2), 483 (2015)

    Article  ADS  Google Scholar 

  55. Y Meroz, I M Sokolov and J Klafter, Phys. Rev. Lett. 110(9), 090601 (2013)

    Article  ADS  Google Scholar 

  56. V E Tarasov, Commun. Nonlin. Sci. Numer. Simulat. 30(1), 1 (2016)

    Article  Google Scholar 

  57. A R Seadawy, D Lu and M M A Khater, Eur. J. Comput. Mech. 1779, 1 (2017)

    Google Scholar 

  58. A Sama-ae, N Chaidee and K Neammanee, Commun. Stat. - Theory Methods 47(4), 779 (2018)

    Article  Google Scholar 

  59. S Reuveni, J Klafter and R Granek, Phys. Rev. E 85(1), 011906 (2012)

    Article  ADS  Google Scholar 

  60. V E Tarasov, Commun. Nonlinear Sci. Numer. Simul. 20(2), 360 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  61. J-H Jeon, A V Chechkin and R Metzler, Phys. Chem. Chem. Phys. 16(30), 15811 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tankou Tagne Alain Sylvain.

Appendix

Appendix

To see a possible generalisation of this problem, in the same spirit as in Weiss treatise [58], in Fourier–Laplace space

$$\begin{aligned} u\bar{c}_y (k,u) - \bar{c}_y \left( {k,0} \right)= & {} u\psi (u)\phi \left( k \right) \bar{c}_y \left( {k,u} \right) \nonumber \\&- \psi (u)\bar{c}_y \left( {k,0} \right) , \end{aligned}$$
(45)

the Fourier transform of \(\phi \left( k \right) \) is an operator in k. Thus

$$\begin{aligned} \phi \left( k \right) \bar{c}_y \left( {k,x} \right) \equiv \lambda _c (k)\bar{c}_y \left( {k,x} \right) . \end{aligned}$$
(46)

Assume that subdiffusion is characterised by a finite transfer variance \(\Sigma ^2 \) associated with a diverging characteristic waiting time. Considering the expansions for small k and the usual long-time limit [59], we reach the relation

$$\begin{aligned} \bar{c}_y (k,u) - \frac{{\bar{c}_y (k,0)}}{u} = u^{ - \alpha } L(z)\bar{c}_y (k,u). \end{aligned}$$
(47)

Using the definition of the Riemann–Liouville fractional differentiation of order \(1-\alpha \), \(0<\alpha <1\) [60]

$$\begin{aligned} _0 D_x^{1 - \alpha } \bar{c}_y (k,u) = \frac{1}{{\Gamma (\alpha )}}\frac{\partial }{{\partial x}}\int _0^x {\text {d}x'} \frac{{\bar{c}_y (k,x')}}{{(x - x')^{1 - \alpha } }}. \end{aligned}$$
(48)

The integration of the corresponding theorem of Laplace transformation can be shown to hold for fractional integration

$$\begin{aligned} \mathscr {L}\{ {_0 D_x^{ - \alpha } c_y (k,x)} \} = u^{ - \alpha } c_y (k,u). \end{aligned}$$
(49)

We obtain the fractional partial equation

$$\begin{aligned} \frac{{\partial \bar{c}_y (k,u)}}{{\partial x}} = _{0}{D}_x^{1 - \alpha } L(z) \bar{c}_y (k,u), \end{aligned}$$
(50)

by considering the operator

$$\begin{aligned} L(z) = \frac{\partial }{{\partial z}}\left[ {K_z (x,z)\frac{\partial }{{\partial z}}}\right] . \end{aligned}$$

Let us consider the fractional diffusion-type eq. (50), in combination with the separation ansatz

$$\begin{aligned} \bar{c}_y {(x,z)}= \sum \limits _{n = 0}^\infty X_{n}(x)Z_{n}(z). \end{aligned}$$
(51)

The resulting equation

$$\begin{aligned} \frac{{\text {d}X(x)}}{{\text {d}x}}(_0 D_x^{1 - \alpha } X)^{ - 1} = \frac{{L(z)}Z}{Z} = - \lambda \end{aligned}$$
(52)

is then separated into the pair of eigenequations [42, 61]

$$\begin{aligned}&_0 D_x^\alpha X(x) - \frac{{x^{ - \alpha } \delta (0)}}{{\Gamma (1 - \alpha )}} = \lambda _{n,\alpha } X(x) \end{aligned}$$
(53)
$$\begin{aligned}&L(z)Z(z)=-\lambda _{n, \alpha }Z \end{aligned}$$
(54)

for an eigenvalue \(\lambda _{n,\alpha }\) of L(z).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sylvain, T.T.A., Patrice, E.A., Marie, E.E.J. et al. Analytical solution of the steady-state atmospheric fractional diffusion equation in a finite domain. Pramana - J Phys 95, 1 (2021). https://doi.org/10.1007/s12043-020-02034-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02034-4

Keywords

PACS Nos

Navigation