A geometric look at the objective gravitational wave function reduction


There is a famous criterion for objective wave function reduction which is derived by using the Shrödinger–Newton equation [L Diosi, Phys. Lett. A 105(4–5), 199 (1984)]. In this regard, a critical mass for the transition from quantum world to the classical world is determined for a particle or an object. In this paper, we shall derive that criterion by using the concept of Bohmian trajectories. This study has two consequences. The first is, it provides a geometric framework for the problem of wave function reduction. The second is, it represents the role of quantum and gravitational forces in the reduction process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    L Diosi, Phys. Lett. A 105(4–5), 199 (1984)

  2. 2.

    F Karolyhazy, Nuovo Cimento A 42, 390 (1966)

    ADS  Article  Google Scholar 

  3. 3.

    L Diosi, Phys. Lett. A 120(8), 377 (1987)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    L Diosi, Phys. Rev. A 40, 1165 (1989)

    ADS  Article  Google Scholar 

  5. 5.

    A Bassi, K Lochan, S Satin, T P Singh and H Ulbricht, Rev. Mod. Phys. 85, 471 (2013)

    ADS  Article  Google Scholar 

  6. 6.

    R Penrose, Gen. Relativ. Gravit. 28(5), 581 (1996)

  7. 7.

    R Penrose, J. Phys.: Conf. Ser. 174012001 (2009)

  8. 8.

    R Penrose, Found. Phys. 44, 557 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    P R Holland, The quantum theory of motion (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  10. 10.

    J J Sakurai and J Napolitano, Modern quantum mechanics (Cambridge University Press, 2017)

  11. 11.

    K Landsman, The measurement problem, in: Foundations of quantum theory. Fundamental theories of physics (Springer, Cham, 2017) Vol. 188

  12. 12.

    J Von Neumann, Mathematical foundations of quantum mechanics (Princeton University Press, 1996)

  13. 13.

    J A Wheeler and W H Zurek, Quantum theory and measurement (Princeton University Press, 1983)

  14. 14.

    F J Belinfante, A survey of hidden-variables theories (Elsevier Science and Technology, 1973)

  15. 15.

    G C Ghirardi, A Rimini and T Weber, Quantum probability and applications II (1984) pp. 223–232

  16. 16.

    G C Ghirardi, A Rimini and T Weber, Phys. Rev. D 34, 470 (1986)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    V Allori, S Goldstein, R Tumulka and N Zanghi, On the common structure of Bohmian mechanics and the GhirardiRiminiWeber theory, arXiv:quant-ph/0603027

  18. 18.

    N Gisin, Phys. Lett. A 143(1–2) 1 (1990)

  19. 19.

    R W Carrol, Fluctuations, information, gravity and the quantum potential (Springer, Netherlands, 2006)

    Google Scholar 

  20. 20.

    F Shojai and M Golshani, Int. J. Mod. Phys. A 13(4), 677 (1998)

    ADS  Article  Google Scholar 

  21. 21.

    I Licata and D Fiscaletti, Quantum potential: Physics, geometry and algebra (Springer International Publishing, 2014)

  22. 22.

    F Rahmani, M Golshani and M Sarbishei, Pramana – J. Phys. 86(4), 747 (2016)

    ADS  Article  Google Scholar 

  23. 23.

    Bryce Seligman Dewitt and Neill Graham, The many worlds interpretation of quantum mechanics (Princeton Series in Physics, 2015)

  24. 24.

    Max Tegmark, Fortsch. Phys. 46, 855 (1998)

    MathSciNet  Article  Google Scholar 

  25. 25.

    H Everett, Rev. Mod. Phys. 29, 454 (1957)

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    J A Wheeler, Rev. Mod. Phys. 29, 463 (1973)

    ADS  Article  Google Scholar 

  27. 27.

    David Wallace, The emergent multiverse: Quantum theory according to the Everett interpretation (Oxford University Press, 2014), ISBN 978-0-19-954696-1

  28. 28.

    D Bohm, Phys. Rev. 85(2), 166 (1952)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    D Bohm, Wholeness and the implicate order (Routledge & Kegan Paul, 1980)

  30. 30.

    D Bohm and B J Hiley, The undivided universe: An ontological interpretation of quantum theory (Routledge, 1993)

  31. 31.

    The Bohmian quantum potential for the relativistic electron has been derived recently by Hiley and co-workers through complicated methods of Clifford algebra \(C^{0}_{3}\,[33]\). There, the quantum potential is considered as additional term in the Hamilton–Jacobi equation of the electron and is obtained by comparing with the original equation \(p_\mu p^\mu =m^2\). In other words, in that case too the relation \(p_\mu p^\mu ={\cal{M}}^2\) holds, where \(\cal{M}^2=m^2+Q_{\text{Dirac}}\)

  32. 32.

    The polar form substitution of the wave function into the Klein–Gordon equation is not the only way to get the Hamilton–Jacobi equation (11)

  33. 33.

    B J Hiley and R E Callaghan, Found. Phys. 42, 192 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    F Rahmani and M Golshani, Int. J. Theor. Phys. 56, 3096 (2017)

    Article  Google Scholar 

  35. 35.

    F Rahmani, M Golshani and Gh Jafari, Int. J. Mod. Phys. A 33(22) (2018), https://doi.org/10.1142/S0217751X18501294

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Faramarz Rahmani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahmani, F., Golshani, M. & Jafari, G. A geometric look at the objective gravitational wave function reduction. Pramana - J Phys 94, 163 (2020). https://doi.org/10.1007/s12043-020-02032-6

Download citation


  • Gravitational reduction of the wave function
  • Bohmian quantum potential
  • Bohmian geodesic deviation equation
  • Bohmian trajectories


  • 03.65.Ca
  • 03.65.Ta
  • 04.20.Cv
  • 03.65.w