Predictions on structural, electronic, magnetic and thermal properties of new Heusler alloys Cr\(_{{{2}}}\)NbSi\(_{{1-x}}\)Ge\(_{{x }}\) from first-principles calculations

Abstract

In this study, by using full-potential linearised augmented plane wave (FP-LAPW) method with the generalised gradient approximation (GGA) based on density functional theory (DFT), the structural, electronic, elastic and magnetic properties of the Heusler alloys Cr\(_{\mathrm {2}}\)NbSi\(_{{1-x}}\)Ge\(_{x}\) have been evaluated. The AlCu\(_{\mathrm {2}}\)Mnl-type structure is more stable than the CuHg\(_{\mathrm {2}}\)Ti-type structure at equilibrium volume for the compounds. The ground-state properties of our alloys including the lattice parameter and bulk modulus were calculated. In view of Poisson’s and Pugh’s ratio, the ductility and brittleness of Cr\(_{\mathrm {2}}\)NbSi\(_{{1-x}}\)Ge\(_{x}\) has been analysed. The mechanical stability is maintained throughout the pressure range with high value of Debye temperature. The electronic band structures and density of states of our compounds show a half metallic character with total magnetic moments, −3.00 \({\mu }_{\mathrm {B}}\) per formula unit with indirect band gap, \(E_\mathrm{g}\) \(=\) 0.152 eV and 0.262 eV for Cr\(_{\mathrm {2}}\)NbSi and Cr\(_{\mathrm {2}}\)NbGe respectively. Furthermore, we have analysed the thermal properties by the quasi-harmonic Debye model. Through the obtained results, we can say that these compounds can be strong candidates for future spintronic applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    R A de Groot, F M Mueller, P G van Engen and K H J Buschow, Phys. Rev. Lett. 50, 2024 (1983)

    ADS  Article  Google Scholar 

  2. 2.

    M I Katsnelson, V Yu Irkhin, L Chioncel, A I Lichtenstein and R A de Groot, Rev. Mod. Phys. 80, 315 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    X-Q Chen, R Podloucky and P Rogl, J. Appl. Phys. 100, 113901 (2006)

    ADS  Article  Google Scholar 

  4. 4.

    H C Kandpal, G H Fecher and C Felser, J. Phys. D 40, 1507 (2007)

    ADS  Article  Google Scholar 

  5. 5.

    G D Liu, X F Dai, H Y Lui, J L Chen, Y XLi, G Xiao and G H Wu, Phys. Rev. B 77, 14424 (2008)

    ADS  Article  Google Scholar 

  6. 6.

    S Chadov, T Graf, K Chadova, X Dai, F Casper, G H Fecher and C Felser, Phys. Rev. Lett. 107, 047202 (2011)

    ADS  Article  Google Scholar 

  7. 7.

    Közdoğan and I Galanakis, J. Magn. Magn. Mater. 321, L34 (2009)

  8. 8.

    H Luo, L Ma, Z Zhu, G Wu, H Liu, J Qu and Y Li, Physica B 403, 1797 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    K H Sadeghi and F Ahmadian, PramanaJ. Phys. 90: 16 (2018)

    ADS  Article  Google Scholar 

  10. 10.

    T Graf, C Felser and S S P Parkin, Solid State Chem. 39, 1 (2011)

    Article  Google Scholar 

  11. 11.

    K Özdogan, I Galanakis, E Sasioglu and B Aktas, J. Phys. Condens. Mater. 18, 2905 (2006)

    ADS  Article  Google Scholar 

  12. 12.

    W E Pickett and J S Moodera, Phys. Today 54, 39 (2001)

    ADS  Article  Google Scholar 

  13. 13.

    N Shutoh and S Sakurada, J. Alloys Compd. 389, 204 (2005)

    Article  Google Scholar 

  14. 14.

    C S Lue and Y-K Kuo, Phys. Rev. B 66, 085121 (2002)

    ADS  Article  Google Scholar 

  15. 15.

    J Winterlik, G H Fecher and C Felser, Solid State Commun. 145, 475 (2008)

    ADS  Article  Google Scholar 

  16. 16.

    X Dai, G Liu, G H Fecher, C Felser, Y Li and H Liu, J. Appl. Phys. 105, 07E901 (2009)

    Article  Google Scholar 

  17. 17.

    G Y Gao, L Hu, K L Yao, B Luo and N Liu, J. Alloys Compd. 551, 539 (2013)

    Article  Google Scholar 

  18. 18.

    P Klaer, B Balke, V Alijani, J Winterlik, G H Fecher, C Felser and H J Elmers, Phys. Rev. B 84, 144413 (2011)

    ADS  Article  Google Scholar 

  19. 19.

    V Alijani, J Winterlik, G H Fecher, S S Naghavi and C Felser, Phys. Rev. B 83, 184428 (2011)

    ADS  Article  Google Scholar 

  20. 20.

    M Parsons, J Grandle, B Dennis, K Neumann and K Ziebeck, J. Magn. Magn. Mater. 185, 140 (1995)

    Google Scholar 

  21. 21.

    E P Wohlfahrth and K H J Bushow, Ferromagnetic materials (Elsevier, Amsterdam, 1998) Vol. 4

    Google Scholar 

  22. 22.

    H Rached, D Rached, R Khenata, A H Reshak and M Rabah, Phys. Status Solidi B 246, 1580 (2009)

    ADS  Article  Google Scholar 

  23. 23.

    I Asfour, H Rached, S Benalia and D Rached, J. Alloys. Compd. 676, 440 (2016)

    Article  Google Scholar 

  24. 24.

    T Roy and A Chakrabarti, PramanaJ. Phys. 89: 6 (2017)

    ADS  Article  Google Scholar 

  25. 25.

    W Kohn and L J Sham, Phys. Rev. 140, A1133 (1965)

    ADS  Article  Google Scholar 

  26. 26.

    M Petersen, F Wagner, L Hufnagel, M Scheffler, P Blaha and K Schwarz, Comput. Phys. Commun.126, 294 (2000)

    ADS  Article  Google Scholar 

  27. 27.

    S E Kulkova, S S Kulkov and A V Subashiev, Comput. Mater. Sci. 36, 249 (2006)

    Article  Google Scholar 

  28. 28.

    M A Blanco, A Martín Pendas, E Francisco, J M Recio and R Franco, J. Mol. Struct. Theochem. 368, 245 (1996)

  29. 29.

    M Flórez, J M Recio, E Francisco, M A Blanco and A Martín Pendas, Phys. Rev. B 66, 144112 (2002)

  30. 30.

    E Francisco, J M Recio, M A Blanco and A Martín Pendas, J. Phys. Chem. 102, 1595 (1998)

  31. 31.

    E Francisco, M A Blanco and G Sanjurjo, Phys. Rev. B 63, 094107 (2001)

    ADS  Article  Google Scholar 

  32. 32.

    F D Murnaghan, Proc. Natl. Acad. Sci. USA 30, 5390 (1944)

    Google Scholar 

  33. 33.

    L Vegard, Z. Phys. 5, 17 (1921)

    ADS  Article  Google Scholar 

  34. 34.

    M J Mehl, Phys. Rev. B 47, 2493 (1993)

    ADS  Article  Google Scholar 

  35. 35.

    I Asfour, H Rached, D Rached, M Caid and M Labair, J. Alloys Compd. 742, 736 (2018)

    Article  Google Scholar 

  36. 36.

    M Born and K Huang, Dynamical theory of crystal lattices, Oxford classic texts in the physical sciences (Oxford University Press, Oxford 1998)

  37. 37.

    J F Nye, Physical properties of crystals: Their representation by tensors and matrices (Oxford University Press, Oxford 1985)

  38. 38.

    S F Pugh, Phil. Mag. 45, 823 (1954)

    Article  Google Scholar 

  39. 39.

    D G Pettifor, Mater. Sci. Technol. 8, 345 (1992)

    Article  Google Scholar 

  40. 40.

    F Peng, D Chen and X D Yang, Solid State Commun. 149, 2135 (2009)

    ADS  Article  Google Scholar 

  41. 41.

    F Chu, Y He, D J Thome and T E Mitchell, Scr. Metall. Mater. 33, 1295 (1995)

    Article  Google Scholar 

  42. 42.

    I Galanakis, Ph Mavropoulos and P H Dederichs, J. Phys. D 39, 765 (2006)

    ADS  Article  Google Scholar 

  43. 43.

    M A Blanco, E Francisco and V Luana, Comput. Phys. Commun. 158, 57 (2004)

    ADS  Article  Google Scholar 

  44. 44.

    A T Petit and P L Dulong, Ann. Chim. Phys. 10, 395 (1819)

    Google Scholar 

  45. 45.

    P Debye, Ann. Phys. 344, 789 (1912)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I Asfour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asfour, I. Predictions on structural, electronic, magnetic and thermal properties of new Heusler alloys Cr\(_{{{2}}}\)NbSi\(_{{1-x}}\)Ge\(_{{x }}\) from first-principles calculations. Pramana - J Phys 94, 161 (2020). https://doi.org/10.1007/s12043-020-02021-9

Download citation

Keywords

  • Density functional theory investigations
  • quaternary Heusler alloys
  • electronic structure
  • gap
  • magnetic properties

PACS

  • 60
  • 70