Skip to main content
Log in

Influence of excluded volume interactions on the dynamics of dendrimer and star polymers in layered random flow

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The influence of excluded volume interactions (EVIs) governs the dynamics of branched polymeric structures. Therefore, we developed a theory with the inclusion of ubiquitous EVIs on average square displacement (ASD) of the centre of mass in layered random flow (LRF). The mean-field approach is used to account for effective EVIs between non-bonded monomers of generalised Gaussian structures. The effect of polymer topology is analysed under the influence of \(\delta \)- and power-law correlated LRF. Qualitatively, the theory predicts two anomalous power-law regimes: (i) the intermediate time subdiffusive behaviour with enhanced ASD, due to EVIs, shows the internal motion of the chain and (ii) the long-time superdiffusive behaviour with slightly suppressed ASD represents the overall diffusion of the polymer. The time dependence of ASD in the presence of EVIs reveals the anomalous long-time dynamics governed by a power-law, \(t^{2-\alpha /2}\). The model with EVIs predicts enhanced swelling of the polymeric structure and the stretching regime in the magnitude of the ASD. The influence of EVIs in star polymer causes enhanced delay in cross-over time which is further increased with increase in functionality. Dendrimer structure with EVI delays the cross-over time with spacer length. Finally, the increase in EVIs in all topologies causes the enhancement in ASD and delay in cross-over time from subdiffusive to superdiffusive regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y Qiu and K Park, Drug Delivery Rev. 53, 321 (2001)

    Google Scholar 

  2. K S Soppimath, T M Aminabhavi, A R Kulkarni and W E Rudzinski, J. Controlled Release 70, 1 (2001)

    Google Scholar 

  3. R M Crooks, M Zhao, L Sun, V Chechik and L K Yeung, Acc. Chem. Res. 34, 181 (2001)

    Google Scholar 

  4. D Astruc, L Liang, A Rapakousiou and J Ruiz, Acc. Chem. Res. 45, 630 (2012)

    Google Scholar 

  5. K Rezwan, Q Z Chen, J J Blakera and A R Boccaccini, Biomaterials 27, 3413 (2006)

    Google Scholar 

  6. F Yang, R Murugan, S Wang and S Ramakrishna, Biomaterials 26, 2603 (2005)

    Google Scholar 

  7. L G Griffith, Acta Mater. 48, 263 (2000)

    ADS  Google Scholar 

  8. R Rzehak, W Kromen, T Kawakatsu and W Zimmermann, Eur. Phys. J. E 2, 3 (2000)

    Google Scholar 

  9. F B Wyart, Europhys. Lett. 23, 105 (1993)

    ADS  Google Scholar 

  10. F B-Wyart, H Hervert and P Pincus, Europhys. Lett. 26, 511 (1994)

  11. P J Flory, J. Chem. Phys. 17, 303 (1949)

    ADS  Google Scholar 

  12. P G de Gennes, Scaling concept in polymer physics (Cornell University Press, London, 1979)

    Google Scholar 

  13. D Katyal and R Kant, Macromol. Theory Simul. 1700009, 1 (2017)

    Google Scholar 

  14. R Service, Science 267, 458 (1995)

  15. P G de Gennes and H J Hervert, J. Phys. (Paris) 44, L351 (1983)

    Google Scholar 

  16. R L Lescanec and M Muthukumar, Macromolecules 23, 2280 (1990)

    ADS  Google Scholar 

  17. D A Tomalia, H Baker, J Dewald, M Hall, G Kallos, S Martin, J Roeck, J Ryder and P Smith, Polm. J. 14, 117 (1985)

    Google Scholar 

  18. M L Mansfield and L I Klushin, Macromolecules 26, 4262 (1993)

    ADS  Google Scholar 

  19. M L Mansfield and L I Klushin, Macromolecules 86, 3994 (1992)

    Google Scholar 

  20. P Biswas and B J Cherayil, J. Chem. Phys. 100, 3201 (1994)

    ADS  Google Scholar 

  21. M Murat and G S Grest, Macromolecules 29, 1278 (1996)

    ADS  Google Scholar 

  22. D A Tomalia et al, Macromolecules 19, 2466 (1986)

    ADS  Google Scholar 

  23. D A Tomalia, V Berry, M Hall and D M Hedstrand, Macromolecules 2, 1167 (1987)

    Google Scholar 

  24. M Doi and S F Edwards, The theory of polymer dynamics (Clarendon Press, Oxford, 1986)

    Google Scholar 

  25. J T Bosko, B D Todd and R J Sadus, J. Chem. Phys. 121, 12050 (2004)

    ADS  Google Scholar 

  26. P E Rouse, J. Chem. Phys. 21, 1272 (1953)

    ADS  Google Scholar 

  27. J U Sommer and A Blumen, J. Phys. A 28, 6669 (1995)

    ADS  MathSciNet  Google Scholar 

  28. H Schiessal, Phys. Rev. E 57, 5775 (1998)

    ADS  Google Scholar 

  29. H Schiessal, C Friedrich and A Blumen, Application of fractional calculus in physics edited by R Hilfer (World Scientific, Singapore, 1999)

    Google Scholar 

  30. P Biswas, R Kant and A Blumen, J. Chem. Phys. 114, 2430 (2001)

    ADS  Google Scholar 

  31. R Kant, P Biswas and A Blumen, Macromol. Theory Simul. 9, 608 (2000)

    Google Scholar 

  32. P Biswas, R Kant and A Blumen, Macromol. Theory Simul. 9, 56 (2000)

    Google Scholar 

  33. J Roovers and B Commanita, Adv. Polym. Sci. 142, 179 (1999)

    Google Scholar 

  34. Neha, D Katyal and R Kant, J. Stat. Phys. 177, 936 (2019)

  35. C Cai and Z Y Chen, Macromolecules 30, 5104 (1997)

    ADS  Google Scholar 

  36. R LaFerla, J. Chem. Phys. 106, 688 (1997)

    ADS  Google Scholar 

  37. F Ganazzoli and R LaFerla, J. Chem. Phys. 113, 9288 (2000)

    ADS  Google Scholar 

  38. D Katyal and R Kant, Phys. Rev. E 94, 062503 (2016)

    ADS  Google Scholar 

  39. C Satmarel, C von Ferber and A Blumen, J. Chem. Phys. 123, 034907 (2005)

    ADS  Google Scholar 

  40. A Blumen and A Jurjiu, J. Chem. Phys. 116, 2636 (2002)

    ADS  Google Scholar 

  41. A Jurjiu, T Koslowski and A Blumen, J. Chem. Phys. 118, 2398 (2003)

    ADS  Google Scholar 

  42. A Blumen, C von Ferber, A Jurjiu and T Koslowski, Macromolecules 37, 638 (2004)

    ADS  Google Scholar 

  43. A Jurjiu, T Koslowski, C von Ferber and A Blumen, Chem. Phys. 294, 187 (2003)

    Google Scholar 

  44. A A Gurtovenko and A Blumen, J. Chem. Phys. 115, 4924 (2001)

    ADS  Google Scholar 

  45. Neha, P Biswas and R Kant, J. Phys. Chem. C 123, 30657 (2019)

  46. G Oshanin and A Blumen, Phys. Rev. E 49, 4185 (1994)

    ADS  Google Scholar 

  47. G Oshanin and A Blumen, Macromol. Theory Simul. 4, 87 (1995)

    Google Scholar 

  48. A Groisman and V Steinberg, Phys. Rev. Lett. 86, 934 (2001)

    ADS  Google Scholar 

  49. M M Afonso and D Vincenzi, J. Fluid Mech. 540, 99 (2005)

    ADS  Google Scholar 

  50. A Celani, S Musacchio and D Vincenzi, J. Stat. Phys. 118, 531 (2005)

    ADS  MathSciNet  Google Scholar 

  51. P Le Doussal, J. Stat. Phys. 69, 917 (1992)

    ADS  Google Scholar 

  52. A Squarcini, E Marinari and G Oshanin, New J. Phys., https://doi.org/10.1088/1367-2630/ab7538

  53. T T Perkins, D E Smith, R G Larson and S Chu, Science 268, 83 (1995)

    ADS  Google Scholar 

  54. H Schiessal, G Oshanin and A Blumen, J. Chem. Phys. 103, 5070 (1995)

    ADS  Google Scholar 

  55. A Blumen, Philos. Mag. B 81, 1021 (2001)

    ADS  Google Scholar 

  56. D Katyal and R Kant, Phys. Rev. E 91, 042602 (2015)

    ADS  Google Scholar 

  57. G J Rai, A Kumar and P Biswas, J. Chem. Phys. 142, 174906 (2015)

    ADS  Google Scholar 

  58. W T Coffey and Y P Kalmykov, The Langevin equation, 4th edn (World Scientific, 2017)

  59. G J Rai, A Kumar and P Biswas, J. Chem. Phys. 141, 034902 (2014)

    ADS  Google Scholar 

  60. G J Rai, A Kumar and P Biswas, J. Rheol. 60, 111 (2016)

    ADS  Google Scholar 

  61. B E Eichinger and J E Martin, J. Chem. Phys. 69, 4595 (1978)

    ADS  Google Scholar 

  62. A Kloczkowski, J E Mark and H L Frisch, Macromolecules 23, 3481 (1990)

    ADS  Google Scholar 

  63. A Kumar, G J Rai and P Biswas, J. Chem. Phys. 138, 10492 (2013)

    Google Scholar 

  64. G J Rai and P Biswas, Polymer 115, 118 (2017)

    Google Scholar 

  65. G Matheron and G De Marsily, Water Resour. Resear. 16, 901 (1980)

    ADS  Google Scholar 

  66. N G V Kampen, Stochastic processes in physics and chemistry (Elsevier, North Holland, 2007)

    MATH  Google Scholar 

  67. J M J Frechet, Science 263, 1710 (1994)

    ADS  Google Scholar 

  68. G R Newkome, Advances in dendritic macromolecules (JAI, London, 1996)

    Google Scholar 

  69. A A Gurtovenko, D A Markelov, Y Y Gotlib and A Blumen, J. Chem. Phys. 119, 7579 (2003)

    ADS  Google Scholar 

  70. Z Y Chen and C Cai, Macromolecules 32, 5423 (1999)

    ADS  Google Scholar 

Download references

Acknowledgements

Neha thanks UGC (JRF and SRF) for financial support. RK is grateful to University of Delhi and DST SERB Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Kant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neha, Katyal, D. & Kant, R. Influence of excluded volume interactions on the dynamics of dendrimer and star polymers in layered random flow. Pramana - J Phys 94, 149 (2020). https://doi.org/10.1007/s12043-020-02020-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02020-w

Keywords

PACS Nos

Navigation