Skip to main content

Control-based verification of multiatoms in a cavity

Abstract

In this paper, we study a model of two two-level atoms interacting with a quantum field. An analytical solution is obtained which is used to study the information entropy of the system. It is shown that the nonlinear term plays a significant role in the behaviour of the minimum uncertainty (MU) compared with the concurrence (C). Our extensive study of information entropy of atoms–field interaction demonstrates that using the coupling strength between the atoms and the field as a controller parameter, one can control the dynamics of the system by increasing the lower bound of the entropic uncertainty relation or decreasing the entanglement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    R Prevedel, D R Hamel, R Colbeck, K Fisher and K J Resch, Nat. Phys. 7, 757 (2011)

    Google Scholar 

  2. 2.

    C F Li, J S Xu, X Y Xu, K Li and G C Guo, Nat. Phys. 7, 752 (2011)

    Google Scholar 

  3. 3.

    J Shi, Z Ding, T Wu, J He, L Yu, W Sun, D Wang and L Ye, Laser Phys. Lett. 14, 125208 (2017)

    ADS  Google Scholar 

  4. 4.

    H M Zou, M F Fang, B Y Yang, Y N Guo, W He and S Y Zhang, Phys. Scr. 89, 115101 (2014)

    ADS  Google Scholar 

  5. 5.

    M Tomamichel, C C W Lim, N Gisin and R Renner, Nat. Commun. 3, 634 (2012)

    ADS  Google Scholar 

  6. 6.

    D P DiVincenzo, M Horodecki, D W Leung, J A Smolin and B M Terhal, Phys. Rev. Lett. 92, 067902 (2004)

    ADS  Google Scholar 

  7. 7.

    P Nataf, M Dogan and K L Hur, Phys. Rev. A 86, 043807 (2012)

    ADS  Google Scholar 

  8. 8.

    M O Hu and H Fan, Phys. Rev. A 86, 032338 (2012)

    ADS  Google Scholar 

  9. 9.

    R Horodecki, P Horodecki, M Horodecki and K Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    ADS  Google Scholar 

  10. 10.

    C H Bennett, G Brassard, C Crepeau, R Jozsa, A Peres and W K Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  Google Scholar 

  11. 11.

    S Sazim, S Adhikari, S Banerjee and T Pramanik, Quantum Inf. Process. 13, 863 (2014)

    ADS  MathSciNet  Google Scholar 

  12. 12.

    S J Devitt, W J Munro and K Nemoto, Rep. Prog. Phys. 76, 076001 (2013)

    ADS  Google Scholar 

  13. 13.

    S Omkar, R Srikanth and S Banerjee, Phys. Rev. A 91, 012324 (2015)

    ADS  MathSciNet  Google Scholar 

  14. 14.

    M Abdel-Aty, J. Phys. A 41, 185304 (2008)

    MathSciNet  Google Scholar 

  15. 15.

    M Abdel-Aty, Eur. Phys. J. D 46, 537 (2008)

    ADS  Google Scholar 

  16. 16.

    N Zidan, M Abdel-Aty and A-S F Obada, Chaos Solitons Fractals 13, 1421 (2002)

    ADS  Google Scholar 

  17. 17.

    M Abdel-Aty, Laser Phys. 11, 781 (2001)

    Google Scholar 

  18. 18.

    T M El-shahat, S Abdel-Khalek, M Abdel-Aty and A-S F Obada, J. Mod. Opt. 50, 2013 (2003)

    ADS  Google Scholar 

  19. 19.

    M Abdel-Aty, J. Phys. A 38, 8589 (2005)

    ADS  MathSciNet  Google Scholar 

  20. 20.

    M Abdel-Aty, J. Mod. Opt. 50, 161 (2003)

    ADS  MathSciNet  Google Scholar 

  21. 21.

    M Abdel-Aty, J. Math. Phys. 44, 1457 (2003)

    ADS  MathSciNet  Google Scholar 

  22. 22.

    S Abdel-Khalek, Y S El-Saman and M Abdel-Aty, Opt. Commun. 283, 1826 (2010)

    ADS  Google Scholar 

  23. 23.

    M Abdel-Aty, Progr. Quant. Electr.31, 1 (2007)

    ADS  Google Scholar 

  24. 24.

    T M El-Shahat, S Abdel-Khalek, M Abdel-Aty and A-S F Obada, Chaos Solitons Fractals18, 289 (2003)

    ADS  Google Scholar 

  25. 25.

    N Zidan, Physica A391, 401 (2012)

    ADS  Google Scholar 

  26. 26.

    M Abdel-Aty, M S Abdalla, and A-S F Obada, J. Opt. B: Quantum Semiclass. Opt.4, S133 (2002)

    ADS  Google Scholar 

  27. 27.

    H Bakry, A S Mohamed and N Zidan, Int. J. Theor. Phys.57, 539 (2018)

    Google Scholar 

  28. 28.

    M S Abdalla, S S Hassan and M Abdel-Aty, Opt. Commun.244, 431 (2005)

    ADS  Google Scholar 

  29. 29.

    M Abdel-Aty, M S Abdalla and A-S F Obada, J. Phys. B35, 4773 (2002)

    ADS  Google Scholar 

  30. 30.

    N Zidan, S Abdel-Khalek and M Abdel-Aty, Int. J. Quantum Inf.10, 1250007 (2012)

    Google Scholar 

  31. 31.

    S Abdel-Khalek, Y S El-Saman and M Abdel-Aty, Pramana – J. Phys.90: 1 (2018)

    ADS  Google Scholar 

  32. 32.

    M Q Lone, Pramana – J. Phys.87: 16 (2016)

  33. 33.

    S Ahmed, P N Wasnik, S Singh and P A Lakshmi, Pramana – J. Phys.87: 85 (2016)

    ADS  Google Scholar 

  34. 34.

    N Zidan, Can. J. Phys.92, 406 (2014)

    ADS  Google Scholar 

  35. 35.

    N H Abdel-Wahab and A Salah, Pramana – J. Phys.89: 87 (2017)

    ADS  Google Scholar 

  36. 36.

    M Abdel-Aty and N Zidan, Pramana – J. Phys.61, 553 (2003)

    ADS  Google Scholar 

  37. 37.

    A-S F Obada, D A M Abo-Kahla, N Metwally and M Abdel-Aty, Physica E43, 1792 (2011)

    ADS  Google Scholar 

  38. 38.

    N Zidan, Appl. Math.5, 2485 (2014)

    MathSciNet  Google Scholar 

  39. 39.

    N Metwally, M Abdel-Aty and A-S F Obada, Opt. Commun.250, 148 (2005)

    ADS  Google Scholar 

  40. 40.

    M Abdel-Aty, J. Opt. B: Quantum Semiclass. Opt.6, 201 (2004)

    ADS  Google Scholar 

  41. 41.

    N Zidan, Int. J. Quantum Inf.8, 1121 (2010)

    Google Scholar 

  42. 42.

    M Abdel-Aty, Physica A313, 471 (2002)

    ADS  Google Scholar 

  43. 43.

    L Pezze and A Smerzi, Phys. Rev. Lett.102,100401 (2009)

    ADS  MathSciNet  Google Scholar 

  44. 44.

    F Jensen, Introduction to computational chemistry (Wiley, Hoboken, 2017)

    Google Scholar 

  45. 45.

    S B Zheng and G C Guo, Phys. Rev. Lett.85, 2392 (2000)

    ADS  Google Scholar 

  46. 46.

    E Solano, G S Agarwal and H Walther, Phys. Rev. Lett.90, 027903 (2003)

    ADS  Google Scholar 

  47. 47.

    W Heisenberg, Z. Phys.43, 172 (1927)

    ADS  Google Scholar 

  48. 48.

    I Bialynicki-Birula and J Mycielski, Commun. Math. Phys.44, 129 (1975)

    ADS  Google Scholar 

  49. 49.

    I Bialynicki-Birula, Phys. Lett. A103, 253 (1984)

    ADS  MathSciNet  Google Scholar 

  50. 50.

    D Deutsch, Phys. Rev. Lett.50, 631 (1983)

    ADS  MathSciNet  Google Scholar 

  51. 51.

    K Kraus, Phys. Rev. D35, 3070 (1987)

    ADS  MathSciNet  Google Scholar 

  52. 52.

    H Maassen and J B Uffink, Phys. Rev. Lett.60, 1103 (1988)

    ADS  MathSciNet  Google Scholar 

  53. 53.

    M Berta, M Christandl, R Colbeck, J M Renes and B Benner, Nat. Phys.6, 659 (2010)

    Google Scholar 

  54. 54.

    J M Renes and J C Boilean, Phys. Rev. Lett.103, 020402 (2009)

    ADS  Google Scholar 

  55. 55.

    M A Nielsen and I L Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  56. 56.

    N J Cerf and C Adami, Phys. Rev. Lett.79, 5194 (1997)

    ADS  MathSciNet  Google Scholar 

  57. 57.

    K G H Vollbrecht and M M Wolf, J. Math. Phys.43, 4299 (2002)

    ADS  MathSciNet  Google Scholar 

  58. 58.

    I Devetak and A Winter, Proc. R. Soc. Lond. Ser. A 461, 207 (2005)

    ADS  Google Scholar 

  59. 59.

    W K Wootters, Phys. Rev. Lett.80, 2245 (1998)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N Zidan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakry, H., Zidan, N. Control-based verification of multiatoms in a cavity. Pramana - J Phys 94, 96 (2020). https://doi.org/10.1007/s12043-020-01978-x

Download citation

Keywords

  • Entanglement
  • minimum uncertainty
  • intensity-dependent coupling

PACS Nos

  • 03.65.Ud
  • 03.65.yz
  • 03.67.Mn
  • 32.80.Qk