Abstract
In this paper, we construct isospectral Hamiltonians without shape-invariant potentials for the relativistic quantum mechanical potentials such as the Dirac oscillator and hydrogen-like atom.
This is a preview of subscription content,
to check access.References
D Gómez-Ullate, N Kamran and R Milson, J. Approx. Theory 162, 987 (2010), arXiv:0805.3376
D Gómez-Ullate, N Kamran and R Milson, J. Math. Anal. Appl. 359, 352 (2009), arXiv:0807.3939
C Quesne, J. Pharm. Anal. 41, 392001 (2008), arXiv:0807.4087
C Quesne, SIGMA 5, 084 (2009) and references therein arXiv:0906.2331
S Odake and R Sasaki, Phys. Lett. B 164, 70 (2011)
S Odake and R Sasaki, Phys. Lett. B 684, 173 (2010)
R Sasaki, S Tsujimoto and A Zhedanov, J. Phys. A 43(31), 315204 (2010)
D Gómez-Ullate, N Kamran and R Milson, J. Math. Anal. Appl. 387(1), 410 (2012)
Y Grandati, Ann. Phys. 327, 2411 (2012)
D Gómez-Ullate, N Kamran and R Milson, J. Phys. A 43, 434016 (2010)
C-L Ho, Prog. Theor. Phys. 126(2), 185 (2011)
B Bagchi, C Quesne and R Roychoudhury, Pramana – J. Phys. 73(2), 337 (2009)
B Bagchi and C Quesne, Phys. Lett. A 273, 285 (2000)
B Bagchi and C Quesne, Phys. Lett. A 300, 18 (2002)
B Bagchi, S Mallik and C Quesne, Int. J. Mod. Phys. A 17, 51 (2002)
Y Grandati, J. Phys. Conf. Ser. 343, 012041 (2012)
S Odake and R Sasaki, J. Phys. A 43, 335201 (2010)
A B J Kuijlaars and R Milson, J. Approx. Theory 200, 28 (2015)
C L Ho, Ann. Phys. 326, 797 (2011)
I Marquette and C Quesne, J. Math. Phys. 54, 042102 (2013)
K V S Shivchaitanya, S Sree Ranjani, P K Panigrahi, R Radhakrishnan and V Srinivasan, Pramana – J. Phys. 85, 53 (2015), arXiv:1110.3738v2
K V S Shivchaitanya, Pramana – J. Phys. 91: 39 (2018)
S Sree Ranjani, Pramana – J. Phys. 93: 29 (2019)
J Benitez, R P Martinez, Y Romero, H N Nunez-Yepez and A L Salas-Brito, Phys. Rev. Lett. 64, 14 (1990)
R P Martinez-y-Romero, H N Nunez-Yepez and A L Salas-Brito, Eur. J. Phys., arXiv:quant-ph990806v1 (1999)
Carlos J Quimbay, Y F Perez and R A Hernandez, Electron. J. Theor. Phys. 41, 19 (2014)
B Hamil, Mod. Phys. Lett. A 32, 31 (2017)
Z Bakhshi, Adv. High Energy Phys. 2018(5), 1 (2018)
A D Alhaidari. http://arxiv.org/abs/org/ftp/hep-th/papers/0501/0501037.pdf
H Hartmann, Theor. Chem. Acc. 24, 201 (1972)
M R Pahlavani, H Rahbar and M Ghezelbash, Open J. Microphys. 3, 1 (2013)
Acknowledgements
KVSSC acknowledges the Department of Science and Technology, Government of India (fast-track scheme (D. O. No: MTR/2018/001046)) for financial support.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1
Calculation of \({\mathrm {d}H_n^{(\alpha , \beta )}}/{\mathrm {d}\cos \theta }\) and \( {\mathrm {d}^2H_n^{(\alpha , \beta )}}/{\mathrm {d}\cos \theta ^2}:\)
Here \(x=\cos \theta \) and \(b=({2s-1})/{2\lambda }.\) Substituting in eq. (21), we get
Appendix 2
Calculation of exceptional potential for the angular part of Hartmann and ring shaped potentials:
Rights and permissions
About this article
Cite this article
Haritha, K., Chaitanya, K.V.S.S. Relativistic potentials with rational extensions. Pramana - J Phys 94, 102 (2020). https://doi.org/10.1007/s12043-020-01956-3
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12043-020-01956-3
Keywords
- Schrödinger equation
- exactly solvable potentials
- supersymmetry
- orthogonal polynomials
- exceptional orthogonal polynomials