Skip to main content
Log in

Relativistic potentials with rational extensions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we construct isospectral Hamiltonians without shape-invariant potentials for the relativistic quantum mechanical potentials such as the Dirac oscillator and hydrogen-like atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D Gómez-Ullate, N Kamran and R Milson, J. Approx. Theory 162, 987 (2010), arXiv:0805.3376

    Article  MathSciNet  Google Scholar 

  2. D Gómez-Ullate, N Kamran and R Milson, J. Math. Anal. Appl. 359, 352 (2009), arXiv:0807.3939

    Article  MathSciNet  Google Scholar 

  3. C Quesne, J. Pharm. Anal. 41, 392001 (2008), arXiv:0807.4087

    MathSciNet  Google Scholar 

  4. C Quesne, SIGMA 5, 084 (2009) and references therein arXiv:0906.2331

  5. S Odake and R Sasaki, Phys. Lett. B 164, 70 (2011)

    Google Scholar 

  6. S Odake and R Sasaki, Phys. Lett. B 684, 173 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. R Sasaki, S Tsujimoto and A Zhedanov, J. Phys. A 43(31), 315204 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. D Gómez-Ullate, N Kamran and R Milson, J. Math. Anal. Appl. 387(1), 410 (2012)

    Article  MathSciNet  Google Scholar 

  9. Y Grandati, Ann. Phys. 327, 2411 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  10. D Gómez-Ullate, N Kamran and R Milson, J. Phys. A 43, 434016 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. C-L Ho, Prog. Theor. Phys. 126(2), 185 (2011)

    Article  ADS  Google Scholar 

  12. B Bagchi, C Quesne and R Roychoudhury, Pramana – J. Phys. 73(2), 337 (2009)

    Article  ADS  Google Scholar 

  13. B Bagchi and C Quesne, Phys. Lett. A 273, 285 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. B Bagchi and C Quesne, Phys. Lett. A 300, 18 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. B Bagchi, S Mallik and C Quesne, Int. J. Mod. Phys. A 17, 51 (2002)

    Article  ADS  Google Scholar 

  16. Y Grandati, J. Phys. Conf. Ser. 343, 012041 (2012)

    Article  Google Scholar 

  17. S Odake and R Sasaki, J. Phys. A 43, 335201 (2010)

    Article  MathSciNet  Google Scholar 

  18. A B J Kuijlaars and R Milson, J. Approx. Theory 200, 28 (2015)

    Article  MathSciNet  Google Scholar 

  19. C L Ho, Ann. Phys. 326, 797 (2011)

    Article  ADS  Google Scholar 

  20. I Marquette and C Quesne, J. Math. Phys. 54, 042102 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. K V S Shivchaitanya, S Sree Ranjani, P K Panigrahi, R Radhakrishnan and V Srinivasan, Pramana – J. Phys. 85, 53 (2015), arXiv:1110.3738v2

  22. K V S Shivchaitanya, Pramana – J. Phys. 91: 39 (2018)

    Article  ADS  Google Scholar 

  23. S Sree Ranjani, Pramana – J. Phys. 93: 29 (2019)

  24. J Benitez, R P Martinez, Y Romero, H N Nunez-Yepez and A L Salas-Brito, Phys. Rev. Lett. 64, 14 (1990)

    Google Scholar 

  25. R P Martinez-y-Romero, H N Nunez-Yepez and A L Salas-Brito, Eur. J. Phys., arXiv:quant-ph990806v1 (1999)

  26. Carlos J Quimbay, Y F Perez and R A Hernandez, Electron. J. Theor. Phys. 41, 19 (2014)

    Google Scholar 

  27. B Hamil, Mod. Phys. Lett. A 32, 31 (2017)

    Article  MathSciNet  Google Scholar 

  28. Z Bakhshi, Adv. High Energy Phys. 2018(5), 1 (2018)

    Article  Google Scholar 

  29. A D Alhaidari. http://arxiv.org/abs/org/ftp/hep-th/papers/0501/0501037.pdf

  30. H Hartmann, Theor. Chem. Acc. 24, 201 (1972)

    Article  Google Scholar 

  31. M R Pahlavani, H Rahbar and M Ghezelbash, Open J. Microphys. 3, 1 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

KVSSC acknowledges the Department of Science and Technology, Government of India (fast-track scheme (D. O. No: MTR/2018/001046)) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K V S Shiv Chaitanya.

Appendices

Appendix 1

Calculation of \({\mathrm {d}H_n^{(\alpha , \beta )}}/{\mathrm {d}\cos \theta }\) and \( {\mathrm {d}^2H_n^{(\alpha , \beta )}}/{\mathrm {d}\cos \theta ^2}:\)

$$\begin{aligned}&H_n(x)=\frac{f(x)}{x-b} \end{aligned}$$
(60)
$$\begin{aligned}&\frac{\mathrm {d}H_n(x)}{\mathrm {d}x}=\frac{f'(x)}{x-b}-\frac{f(x)}{(x-b)^2} \end{aligned}$$
(61)
$$\begin{aligned}&\frac{\mathrm {d}^2H_n(x)}{\mathrm {d}x^2}=\frac{f''(x)}{x-b}-2\frac{f'(x)}{(x-b)^2}+2\frac{f(x)}{(x-b)^3}. \end{aligned}$$
(62)

Here \(x=\cos \theta \) and \(b=({2s-1})/{2\lambda }.\) Substituting in eq. (21), we get

$$\begin{aligned}&(1-\cos ^2\theta )\left[ \frac{f''(\cos \theta )}{\cos \theta -b}-2\frac{f'(\cos \theta )}{(\cos \theta -b)^2}\right. \nonumber \\&\left. \quad +2\frac{f(\cos \theta )}{(\cos \theta -b)^3}\right] +[2(\lambda -s\cos \theta )-\cos \theta ]\nonumber \\&\quad \times \left[ \frac{f'(\cos \theta )}{\cos \theta -b}-\frac{f(\cos \theta )}{(\cos \theta -b)^2}\right] +[(n^2+2sn)+V_e]\nonumber \\&\quad \times \left[ \frac{f'(\cos \theta )}{\cos \theta -b}-\frac{f(\cos \theta )}{(\cos \theta -b)^2}\right] =0\end{aligned}$$
(63)
$$\begin{aligned}&\sin ^2\theta \left[ f''(\cos \theta )-2\sin ^2\theta \frac{f'(\cos \theta )}{(\cos \theta -b)}\right. \nonumber \\&\left. \quad +2\sin ^2\theta \frac{f(\cos \theta )}{(\cos \theta -b)^2}\right] +[2(\lambda -s\cos \theta )-\cos \theta ]\nonumber \\&\quad \times \left[ \frac{f'(\cos \theta )}{\cos \theta -b}-\frac{f(\cos \theta )}{(\cos \theta -b)^2}\right] \nonumber \\&\quad +[(n^2+2sn)+V_e]\left[ \frac{f'(\cos \theta )}{\cos \theta -b}-\frac{f(\cos \theta )}{(\cos \theta -b)^2}\right] {=}\,0\nonumber \\\end{aligned}$$
(64)
$$\begin{aligned}&\sin ^2\theta [f''(\cos \theta )\nonumber \\&\quad + \left[ 2(\lambda -s\cos \theta )-\cos \theta -\frac{2\sin ^2\theta }{\cos \theta -b}\right] f'(\cos \theta )\nonumber \\&\quad +[(n^2+2sn)+V_e]\left[ \frac{2(\lambda -s\cos \theta )-\cos \theta }{(\cos \theta -b)}\right. \nonumber \\&\left. -\frac{2\sin ^2\theta }{(\cos \theta -b)^2}\right] f(\cos \theta )=0. \end{aligned}$$
(65)

Appendix 2

Calculation of exceptional potential for the angular part of Hartmann and ring shaped potentials:

$$\begin{aligned}&\sin ^2\theta f_n''(\cos \theta ) +\left[ 2\lambda -(2s+1) \cos \theta -\frac{2\sin ^2\theta }{\cos \theta -\frac{2s-1}{2\lambda }}\right] f_n'(\cos \theta )\nonumber \\&\quad +\left[ n(n+2s)+\frac{2\sin ^2\theta }{\cos \theta -(\frac{2s-1}{2\lambda })^2}+\frac{2\lambda -2s\cos \theta -\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}-\frac{\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}\right] f_n(\cos \theta )= 0\end{aligned}$$
(66)
$$\begin{aligned}&\sin ^2\theta f_n''(\cos \theta ) +\left[ \frac{(2\lambda -(2s+1)\cos \theta )(\cos \theta -\frac{2s-1}{2\lambda })-2\sin ^2\theta }{\cos \theta -\frac{2s-1}{2\lambda }}\right] f_n'(\cos \theta )\nonumber \\&\quad +\left[ n^2+2sn+\frac{2\sin ^2\theta }{\cos \theta -(\frac{2s-1}{2\lambda })^2}+\frac{2\lambda -2s\cos \theta +\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}-\frac{2\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}\right] f_n(\cos \theta ) = 0 \end{aligned}$$
(67)
$$\begin{aligned}&\sin ^2\theta f_n''(\cos \theta ) +\left[ \frac{2\lambda \cos \theta -2s\cos ^2\theta -\cos ^2\theta -2s+1-\frac{(2s-1)(2s+1)}{2\lambda }\cos \theta -2+2\cos ^2\theta }{\cos \theta -\frac{2s-1}{2\lambda }}\right] f_n'(\cos \theta )\nonumber \\&\quad +\left[ n^2+2sn+\frac{2\sin ^2\theta }{\cos \theta -(\frac{2s-1}{2\lambda })^2}+\frac{2\lambda -2s\cos \theta +\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}-\frac{2\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}\right] f_n(\cos \theta ) = 0\end{aligned}$$
(68)
$$\begin{aligned}&\sin ^2\theta f_n''(\cos \theta )+\left[ \frac{2\lambda \cos \theta -2s\cos ^2\theta -2s-\frac{(2s-1)(2s+1)}{2\lambda }\cos \theta -1+\cos ^2\theta }{\cos \theta -\frac{2s-1}{2\lambda }}\right] f_n'(\cos \theta )\nonumber \\&\quad +\left[ n^2+2sn+\frac{2\sin ^2\theta }{\cos \theta -\left( \frac{2s-1}{2\lambda }\right) ^2}+\frac{2\lambda -2s\cos \theta +\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}-\frac{2\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}\right] f_n(\cos \theta ) = 0\end{aligned}$$
(69)
$$\begin{aligned}&\sin ^2\theta f_n''(\cos \theta ) +\left[ \frac{2\lambda (1-(\frac{2s-1}{2\lambda })\cos \theta )\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}-\frac{(2s+1)-\frac{2s-1}{2\lambda }(2s+1)\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}\right] \nonumber \\&\qquad \times f_n'(\cos \theta ) \nonumber \\&\quad +\left[ n^2+2sn+\frac{2\sin ^2\theta }{\cos \theta -(\frac{2s-1}{2\lambda })^2}+\frac{2\lambda -2s\cos \theta +\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}-\frac{2\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}\right] f_n(\cos \theta ) = 0 \end{aligned}$$
(70)
$$\begin{aligned}&\sin ^2\theta f_n''(\cos \theta ) +\left[ \frac{2\lambda (1-(\frac{2s-1}{2\lambda })\cos \theta )\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}-\frac{2\lambda [1-(\frac{2s-1}{2\lambda })\cos \theta ]\frac{2s+1}{2\lambda }}{\cos \theta -\frac{2s-1}{2\lambda }}\right] f_n'(\cos \theta )\nonumber \\&\quad +\left[ n^2+2sn+\frac{2\sin ^2\theta }{(\cos \theta -\frac{2s-1}{2\lambda })^2}+\frac{2\lambda (1-(\frac{2s-1}{2\lambda }))\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}-\frac{2\cos \theta }{\cos \theta -\frac{2s-1}{2\lambda }}\right] f_n(\cos \theta ) = 0. \end{aligned}$$
(71)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haritha, K., Chaitanya, K.V.S.S. Relativistic potentials with rational extensions. Pramana - J Phys 94, 102 (2020). https://doi.org/10.1007/s12043-020-01956-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-01956-3

Keywords

PACS No

Navigation