Abstract
D-dimensional fractional Klein–Gordon equation with fractional vector and scalar potential has been studied. Both fractional potentials are taken as attractive Coulomb-type with different multiplicative parameters, namely v and s. Jumarie-type definitions for fractional calculus have been used. We have succeeded in achieving Whittaker-type classical differential equation in fractional mode for the required eigenfunction. Fractional Whittaker equation has been manipulated using the behaviour of the eigenfunction at asymptotic distance and origin. This manipulation delivers fractional-type confluent hypergeometric equation to solve. Power series method has been employed to do the task. All the obtained results agree with the existing results in literature when fractional parameter \(\alpha \) is unity. Finally, we furnish numerical results with a few eigenfunction graphs for different spatial dimensions and fractional parameters.
This is a preview of subscription content, access via your institution.








References
S F Lacroix, Traite du calcul differentiel et du calcul integral (Mme. VeCourcier, Paris, 1819)
J He, International Conference on vibrating Engineering (Dalian, China 1998) p. 288
S Fomin, V Chugunov and T Hashida, Transp. Porous Media 81, 187 (2010)
G M Zaslavsky, Phys. Rep. 371, 461 (2002)
R Metzler and J Klafter, Phys. Rep. 339, 1 (2000)
J He, Bull. Sci. Technol. 15, 86 (1999)
F Riewe, Phy. Rev. E 53, 1890 (1996)
S Muslih, D Baleanu and E Rabei, Phys. Scr. 73, 436 (2006)
O P Agarwal, J. Math. Anal. Appl. 272, 368 (2002)
R Hilfer, Applications of fractional calculus in physics (World Scientific Publishing, River Edge, 2000)
N Laskin, Phys. Lett. A 298, 298 (2000)
N Laskin, Phys. Rev. E 66, 056108 (2002)
N Laskin, Chaos 10, 780 (2000)
J Dong and M Xu, J. Math. Anal. Appl. 344, 1005 (2008)
X Y Guo and M Y Xu, J. Math. Phys. 47, 082104 (2006)
J Banerjee, U Ghosh, S Sarkar and S Das, Pramana – J. Phys.88(4): 70 (2017)
K S Miller and B Ross, An introduction to the fractional calculus and fractional differential equations (John Wiley and Sons, New York, 1993)
I Podlubny, Fractional differential equations, in: Mathematics in science and engineering (Academic Press, San Diego, 1999)
A A Kilbas, H M Srivastava and J J Trujillo, Theory and application of fractional differential equations (Elsevier, Amsterdam, 2006)
M Caputo, Geophys. J. R. Astr. Soc. 13, 529 (1967)
G Jumarie, Comput. Math. Appl. 51, 1367 (2006)
G Jumarie, Acta Math. Sinica 28(9), 1741 (2012)
G Jumarie, J. Appl. Math. Inform. 26, 1101 (2008)
G Jumarie, Appl. Math. Lett. 18, 817 (2005)
T Das, U Ghosh, S Sarkar and S Das, J. Math. Phys. 59, 022111 (2018)
T Das, U Ghosh, S Sarkar and S Das, Pramana – J. Phys. 93: 76 (2019), https://doi.org/10.1007/s12043-019-1836-x
Z Q Ma, S H Dong, X Y Gu, J Yu and M Lozada-Cassou, Int. J. Mod. Phys. E 13, 597 (2004)
F Yasuk, A Durmus and I Boztosun, J. Math. Phys. 47, 082302 (2006)
A Alhaidari, H Bahlouli and A Al-Hasan, Phys. Lett. A 349, 87 (2005)
S H Dong, G H Sun and D Popov, J. Math. Phys. 44, 4467 (2003)
U Ghosh, J Banerjee, S Sarkar and S Das, Pramana – J. Phys. 90: 74 (2018), https://doi.org/10.1007/s12043-018-1561-x(2018)
G B Arfken and H J Weber, Mathematical methods for physicists (Academic Press, San Diego, 2001)
G Jumarie, Cent. Eur. J . Phys. 11, 617 (2013)
G Jumarie, Appl. Math. Lett. 22, 378 (2009)
G Jumarie, Fractional differential calculus for non-differentiable functions: Mechanics, Geometry, Stochastics, Information Theory (LAP Lambert Academic Publishing, Germany, 2013)
U Ghosh, S Sengupta, S Sarkar and S Das, Eur. J. Acad. Essays 2, 70 (2015)
G M Mittag-Leffler, C. R. Acad. Sci. Paris (Ser. II) 137, 554 (1903)
U Ghosh, S Sarkar and S Das, Adv. Pure Math. 5, 717 (2015)
U Ghosh, S Sarkar and S Das, Am. J. Math. Anal. 3, 72 (2015)
S Das, Kindergarten of fractional calculus (to be published)
S H Dong, Wave equations in higher dimensions (Springer, Berlin, 2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Das, T., Ghosh, U., Sarkar, S. et al. Analytical study of D-dimensional fractional Klein–Gordon equation with a fractional vector plus a scalar potential. Pramana - J Phys 94, 33 (2020). https://doi.org/10.1007/s12043-019-1902-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12043-019-1902-4
Keywords
- Fractional Klein–Gordon equation
- power series method
- fractional Coulomb potential
- Mittag–Leffler function