Skip to main content
Log in

Single and multiband THz metamaterial polarisers

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We report single and multiband linear polarisers for terahertz (THz) frequencies using cut-wire metamaterials (MM). The MMs were designed by finite-element method (FEM), fabricated by electron beam lithography, and characterised by THz time-domain spectroscopy. The MM unit cells consist of single or multiple length cut-wire pads of gold on semi-insulating gallium arsenide (GaAs) for single or multiple band polarisers. For example, a MM with a square unit cell of \(50~{\mu }\hbox {m}\) size on 1 mm GaAs substrate with a gold cut wire of \(65~{\mu }\hbox {m}\) length, \(2~{\mu }\hbox {m}\) width, and 150 nm height gives a resonance around 1.05 THz. The dependence of the resonance frequency of the single-band polariser on the length of the cut-wires was explained based on transmission line model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F Yan, C Yu, H Park, E P J Parrott, P Pickwell-MacPherson, J. Infrared Millim. Terahertz Waves34: 489 (2013)

    Article  Google Scholar 

  2. M C George, J Bergquist, R Petrova, B Wang and E Gardner, Proc. SPIE8873, 887302 (2013)

    Article  Google Scholar 

  3. C-F Hsieh, Y-C Lai, R-P Pan and C-L Pan, Opt. Lett.33, 1174 (2008)

    Article  ADS  Google Scholar 

  4. L Ren et al,Nano Lett.9, 2610 (2009).

    Article  ADS  Google Scholar 

  5. A Wojdyla and G Gallot, Opt. Express19, 14099 (2011)

    Article  ADS  Google Scholar 

  6. D Polley, A Ganguly, A Barman and R K Mitra, Opt. Lett.38, 2754 (2013)

    Article  ADS  Google Scholar 

  7. I Yamada, K Takano, M Hangyo, M Saito and W Watanabe, Opt. Lett.34, 274 (2009)

    Article  ADS  Google Scholar 

  8. A Partanen et al,Appl. Opt.51, 8360 (2012)

    Article  ADS  Google Scholar 

  9. Z Huang, H Park, E P J Parrott, H P Chan and E Pickwell-MacPherson, IEEE Photon. Technol. Lett.25, 81 (2012)

    Article  Google Scholar 

  10. T Kondo, T Nagashima and M Hang, J. Appl. Phys.42, L373 (2003)

    Article  ADS  Google Scholar 

  11. S-H Lee, S-Y Gee, C Kang and C-S Kee, J. Opt. Soc. Korea14, 282 (2010)

    Article  Google Scholar 

  12. M P M Colleoni and B Vidal, Opt. Express22, 30156 (2014)

    Article  ADS  Google Scholar 

  13. B R Sangala et al, 12th International Conference on Fiber Optics and Photonics, India (Optical Society of America, 2014) Paper ID S4D.4

  14. N K Grady et al, Science340, 1304 (2013)

    Article  ADS  Google Scholar 

  15. R Yahiaoui et al, 35th International Conference on Infrared, Millimeter, and Teraertz waves (IEEE, 2010) p. 1

  16. V M Shalaev et al, Opt. Lett.30, 3356 (2005)

    Article  ADS  Google Scholar 

  17. V D Lam, N T Tung, L V Hong and Y P Lee, J. Phys.: Conf. Ser.187, 012015 (2009)

    Article  Google Scholar 

  18. C Imhof and R Zengerle, Opt. Express14, 8257 (2006)

    Article  ADS  Google Scholar 

  19. C Imhof and R Zengerle, Opt. Commun.280, 213 (2007)

    Article  ADS  Google Scholar 

  20. Z Lu, B Camps-Raga, N E Islam, Phys. Res. Int.2012, Article ID 206879 (2012)

  21. Q-Y Wen et al, Appl. Phys. Lett.97, 021111 (2010)

    Article  ADS  Google Scholar 

  22. J Li et al, Appl. Phys. Lett.102, 121101(2013)

    Article  ADS  Google Scholar 

  23. H Tao et al, Opt. Express16, 7181 (2008)

    Article  ADS  Google Scholar 

  24. T V Do et al, Adv. Nat. Sci. Nanosci. Nanotechnol.3, 045014 (2012)

    Article  ADS  Google Scholar 

  25. Y Fan, N-H Shen, T Koschny and C M Soukoulis, ACS Photon.2, 151 (2015)

    Article  Google Scholar 

  26. T Suzuki, M Nagari and Y Kishi, Opt. Lett.41, 325 (2016)

    Article  ADS  Google Scholar 

  27. A Ferraro et al, Opt. Lett.41, 2009 (2016)

    Article  ADS  Google Scholar 

  28. T-Y Yu et al, Opt. Lett.42, 4917 (2017)

    Article  ADS  Google Scholar 

  29. X-X Zheng, Z-Y Xiao and X Y Ling, Opt. Quant. Electron.48, 461 (2016)

    Article  Google Scholar 

  30. B Li et al, AIP Adv.6, 025215 (2016)

    Article  ADS  Google Scholar 

  31. M Liu et al, Nature487, 345 (2012)

    Article  ADS  Google Scholar 

  32. K Takano et al, J. Appl. Phys.107, 024907 (2010)

    Article  ADS  Google Scholar 

  33. L Fu, H Schweizer, H Guo, N Liu and H Giessen, Phys. Rev. B78, 115110 (2008)

    Article  ADS  Google Scholar 

  34. A M H Abadi and N Behdad, IEEE Trans. Antennas Propag.63, 4766 (2005)

    Article  Google Scholar 

  35. V V Tuchin, L V Wang and D A Zimnykov, Optical polarisation in biomedical applications (Springer, Berlin, 2006)

  36. G A Lampropoulos, J Christowski and R M Measures, Applications of photonic technology (Springer, Berlin, 1995)

  37. A Watson, Fabrication of micropolariser and narrow band pass pixel filters for focal plane array , M.S. thesis (University of Dayton, Ohio, USA, 2011)

  38. C Sabah, B Mulla, H Altan and L Ozyuzer, Pramana – J. Phys. 91: 17 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bagvanth Reddy Sangala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangala, B.R., Nagarajan, A., Deshmukh, P. et al. Single and multiband THz metamaterial polarisers. Pramana - J Phys 94, 2 (2020). https://doi.org/10.1007/s12043-019-1876-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1876-2

Keywords

PACS Nos

Navigation