Skip to main content
Log in

Vibrational resonance in a higher-order nonlinear damped oscillator with rough potential

  • Published:
Pramana Aims and scope Submit manuscript

A Correction to this article was published on 03 January 2020

This article has been updated

Abstract

We examine the vibrational resonance (VR) of particles moving in a strongly nonlinear damped medium with a harmonically perturbed potential consisting of a background smooth triple-well potential superimposed by a fast oscillating periodic function and subjected to weak and high-frequency (HF) driving forces. The combined effects of the nonlinear damping inhomogeneity and roughness induced by the harmonic perturbation on the phenomenon of VR were theoretically and numerically analysed. It was found that damping inhomogeneity contributed significantly to the enhancement of resonant states, while potential roughness can be optimised by the HF signal to assist resonance enhancement. Furthermore, the traditional smooth VR shapes occurring in the absence of roughness experienced significant distortion occasioned by potential roughness manifesting as spikes that could ultimately be optimised by large amplitudes of the fast signal to energetically facilitate the potential barrier crossing process, thereby enabling VR enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 03 January 2020

    In our recently published paper one of the author���s affiliation (O. O. Popoola) was wrongly indicated.

References

  1. P S Landa and P V E McClintock, J. Phys. A 33(45), L433 (2000)

    Article  ADS  Google Scholar 

  2. Y Ren, Y Pan, F Duan, F Chapeau-Blondeau and D Abbott, Phys. Rev. E 96, 022141 (2017)

    Article  ADS  Google Scholar 

  3. H G Liu, X L Liu, J H Yang, M A F Sanjuán and G Cheng, Nonlinear Dynam. 89(4), 2621 (2017)

    Article  MathSciNet  Google Scholar 

  4. M I Dykman, D G Luchinsky, R Mannella, P V E McClintock, N D Stein and N G Stocks, II Nuovo Cimento D 17(7–8), 661 (1995)

    Article  ADS  Google Scholar 

  5. J Casado-Pascual, J Gómez-Ordónez and M Morillo, Chaos 15(2), 26115 (2005)

    Article  MathSciNet  Google Scholar 

  6. S Zambrano, J M Casado and M A F Sanjuán, Phys. Lett. A 366, 428 (2007)

    Article  ADS  Google Scholar 

  7. A S Pikovsky and J Kurths, Phys. Rev. Lett. 78(5), 775 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. S Rajasekar and M A F Sanjuán, Nonlinear resonances, Springer series in synergetics (Springer, Switzerland, 2016)

  9. S Rajamani, S Rajasekar and M A F Sanjuán, Commun. Nonlin. Sci. Numer. Simulat. 19(11), 4003 (2014)

    Article  ADS  Google Scholar 

  10. R Jothimurugan, K Thamilmaran, S Rajasekar and M A F Sanjuán, Nonlinear Dynam. 83(4),1803 (2016)

    Article  MathSciNet  Google Scholar 

  11. M Gitterman, J. Phys. A 34(24), L355 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. I I Blekhman and P S Landa, Int. J. Non-Linear Mech. 39(3), 421 (2004)

    Article  ADS  Google Scholar 

  13. S Rajasekar, K Abirami and M A F Sanjuán, Chaos 21(3), 033106 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. M Borromeo and F Marchesoni, Phys. Rev. E 73, 016142 (2006)

    Article  ADS  Google Scholar 

  15. C Jeevarathinam, S Rajasekar and M A F Sanjuán, arXiv:1504.04163v1 [nlin.CD] (2015)

  16. S Jeyakumari, V Chinnathambi, S Rajasekar and M A F Sanjuán, Int. J. Bifurc. Chaos 21(1), 275 (2011)

    Article  Google Scholar 

  17. Y Qin, J Wang, C Men, B Deng and X Wei, Chaos 21(2), 023133 (2011)

    Article  ADS  Google Scholar 

  18. H Yu, J Wang, C Liu, B Deng and X Wei, Chaos 21(4), 043101 (2011)

    Article  ADS  Google Scholar 

  19. X Wu, C Yao and J Shuai, Sci. Rep. 5, 7684 (2015)

    Article  Google Scholar 

  20. Z Yang and L Ning, Pramana – J. Phys. 92(6): 89 (2019)

    Article  ADS  Google Scholar 

  21. J P Baltanás, L López, I I Blechman, P S Landa, A Zaikin, J Kurths and M A F Sanjuán, Phys. Rev. E 67, 066119 (2003)

    Article  ADS  Google Scholar 

  22. V N Chizhevsky, Phys. Rev. E 90, 042924 (2014)

    Article  ADS  Google Scholar 

  23. P R Venkatesh and A Venkatesan, Commun. Nonlin. Sci. Numer. Simulat. 39, 271 (2016)

    Article  ADS  Google Scholar 

  24. S Rajasekar, S Jeyakumari, V Chinnathambi and M A F Sanjuán, J. Phys. A 43(46), 465101 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. J H Yang, M A F Sanjuán, W Xiang and H Zhu, Pramana – J. Phys. 81(6), 943 (2013)

    Article  ADS  Google Scholar 

  26. B Deng, J Wang, X Wei, H Yu and H Li, Phys. Rev. E 89, 062916 (2014)

    Article  ADS  Google Scholar 

  27. C Jeevarathinam, S Rajasekar and M A F Sanjuán, Phys. Rev. E 83, 066205 (2011)

    Article  ADS  Google Scholar 

  28. J H Yang and X B Liu, Phys. Scr. 82(2), 025006 (2010)

    Article  ADS  Google Scholar 

  29. J H Yang and X B Liu, Chaos 20(3), 033124 (2010)

    Article  ADS  Google Scholar 

  30. J Yang and H Zhu, Chaos 22(1), 013112 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  31. J H Yang, M A F Sanjuán, F Tian and H F Yang, Int. J. Bifurc. Chaos 25(02), 1550023 (2015)

    Article  Google Scholar 

  32. T L M Djomo Mbong, M S Siewe and C Tchawoua, Commun. Nonlin. Sci. Numer. Simulat. 22(1), 228 (2015)

    Article  ADS  Google Scholar 

  33. T O Roy-Layinde, J A Laoye, O O Popoola and U E Vincent, Chaos 26, 093117 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. T O Roy-Layinde, J A Laoye, O O Popoola, U E Vincent and P V E McClintock, Phys. Rev. E 96, 032209 (2017)

    Article  ADS  Google Scholar 

  35. U E Vincent, T O Roy-Layinde, O O Popoola, P O Adesina and P V E McClintock, Phys. Rev. E 98, 062203 (2018)

    Article  ADS  Google Scholar 

  36. Z Chen and L Ning, Pramana – J. Phys. 90: 49 (2018)

    Article  ADS  Google Scholar 

  37. S Jeyakumari, V Chinnathambi, S Rajasekar and M A F Sanjuán, Chaos 19(4), 043128 (2009)

    Article  ADS  Google Scholar 

  38. S Jeyakumari, V Chinnathambi, S Rajasekar and M A F Sanjuán, Phys. Rev. E 80, 046608 (2009)

    Article  ADS  Google Scholar 

  39. T L M D Mbong, M S Siewe and C Tchawoua, Mech. Res. Commun. 78, 13 (2016)

    Article  Google Scholar 

  40. V N Chizhevsky, Phys. Rev E 89, 062914 (2014)

    Article  ADS  Google Scholar 

  41. C Jeevarathinam, S Rajasekar and M A F Sanjuán, Chaos 23(1), 013136 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  42. T Qin, T Xie, M Luo and K Deng, Chin. J. Phys. 55(2), 546 (2017)

    Article  Google Scholar 

  43. P D’ancona and V  Pierfelice, J. Func. Anal. 227, 30 (2005)

    Article  Google Scholar 

  44. F  Tantussi, D  Vella, M Allegrini, F Fuso, L Romoli and C A Rashed, Precis. Eng. 41, 32 (2015)

    Article  Google Scholar 

  45. C Ma, Y Duan, B Yu, J Sun and Q Tu, J. Eng. Tribol. 23, 1307 (2017)

    Google Scholar 

  46. R Zwanzig, Proc. Natl. Acad. Sci. 85(7), 2029 (1988)

    Article  ADS  Google Scholar 

  47. S Banerjee, R Biswas, K Seki and B Bagchi, J. Chem. Phys. 141, 124105 (2014)

    Article  ADS  Google Scholar 

  48. M Volk, L Milanesi, J P Waltho, C A Huntere and G S Beddardf, Phys. Chem. Chem. Phys. 17(2), 762 (2015)

    Article  Google Scholar 

  49. L  Milanesi, J P Waltho, C A Hunter, D J Shaw, G S Beddard, G D Reid, S Dev and M Volk, Proc. Natl. Acad. Sci. 109(48), 19563 (2012)

    Article  ADS  Google Scholar 

  50. Y Zhou, H Zhu, W Zhang, X Zuo, Y Li and J Yang, Adv. Mech. Eng. 7, 1 (2015)

    Google Scholar 

  51. A Y Wang, J L Mo, X C Wang, M H Zhu and Z R Zhou, Wear 402–403, 80 (2018)

    Article  Google Scholar 

  52. Y Li, Y Xu and J Kurths, Phys. Rev. E 96, 052121 (2017)

    Article  Google Scholar 

  53. D Mondal, P Ghosh and D Ray, J. Chem. Phys. 130(7), 074703 (2009)

    Article  ADS  Google Scholar 

  54. S Camargo and C Anteneodo, Physica A 495, 114 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  55. Y Li, Y Xu, J Kurths and X Yue, Chaos 27(10), 103102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  56. Y Li, Y Xu, J Kurths and X Yue, Phys. Rev. E 94, 042222 (2016)

    Article  ADS  Google Scholar 

  57. K Abirami, S Rajasekar and M A F Sanjuán, Commun. Nonlin. Sci. Numer. Simulat. 47, 370 (2017)

    Article  ADS  Google Scholar 

  58. H G Enjieu Kadji, B R Nana Nbendjo, J B Chabi Orou and P K Talla, Phys. Plasmas 15(3), 032308 (2008)

    Article  ADS  Google Scholar 

  59. M S Siewe, H Cao and M A F Sanjuán, Chaos Solitons Fractals 41(2), 772 (2009)

    Article  ADS  Google Scholar 

  60. M S Siewe, M F M Kakmeni, C Tchawoua and P Woafo, Nonlinear response, and homoclinic chaos of driven charge density in plasma, Report 39090566 (International Atomic Energy Agency (IAEA), Abdus Salam International Centre for Theoretical Physics (Trieste, Italy, 2007))

  61. J Dawson, Phys. Fluids 7(7), 981 (1964)

    Article  ADS  Google Scholar 

  62. H Okuda, Phys. Fluids 16(3), 408 (1973)

    Article  ADS  Google Scholar 

  63. S Gitomer, R Jones, F Begay, A Ehler, J Kephart and R Kristal, Phys. Fluids 29(8), 2679 (1986)

    Article  ADS  Google Scholar 

  64. F F Chen, Phys. Plasmas 2(6), 2164 (1995)

    Article  ADS  Google Scholar 

  65. A Bystrov and V Gildenburg, Plasma Phys. Rep. 27(1), 68 (2001)

    Article  ADS  Google Scholar 

  66. G Liu, T-C Chien, X Cao, O Lanes, E Alpern, D Pekker and M Hatridge, Appl. Phys. Lett. 111(20), 202603 (2017)

    Article  ADS  Google Scholar 

  67. S Boutin, D M Toyli, A V Venkatramani, A W Eddins, I Siddiqi and A Blais, Phys. Rev. Appl. 8, 054030 (2017)

    Article  Google Scholar 

  68. D L Weerawarne, X Gao, A L Gaeta and B Shim, Phys. Rev. Lett. 114, 093901 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

U E Vincent is an alumnus of the Newton International Fellowships. He is supported by the Royal Society of London through their Newton International Fellowship Alumni Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U E Vincent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laoye, J.A., Roy-Layinde, T.O., Omoteso, K.A. et al. Vibrational resonance in a higher-order nonlinear damped oscillator with rough potential. Pramana - J Phys 93, 102 (2019). https://doi.org/10.1007/s12043-019-1865-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1865-5

Keywords

PACS Nos

Navigation