Skip to main content
Log in

Study of entropy generation in transient hydromagnetic flow of couple stress fluid due to heat and mass transfer from a radiative vertical cylinder

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Radiative–convective flow studies find wide range of applications in furnace design, solar fans, photochemical reactors, turbid water bodies, etc. The present article focusses on unsteady radiative–convective hydromagnetic couple stress fluid (CSF) flow from a vertical cylinder using the thermodynamic concept. The obtained governing equations of the present model are resolved by a well-organised numerical scheme. The unsteady nature of friction, entropy, coefficients of heat and mass transfer (HMT) along with the time-independent state pattern of flow-field profiles, are shown graphically for distinct values of governing radiation parameter, magnetic parameter, concentration parameter, and constant parameter to display important aspects of the solution. To analyse the HMT process in a 2D domain, Bejans flow visualisation is considered along with isotherms, streamlines, and isoconcentration lines. The Bejans HMT flow visualisation shows that the heat and mass function contours are denser in the foremost verge of the hot surface of the cylinder compared to other contours. The result indicates that the entropy generation (EG) parameter increases with decreasing values of radiation and magnetic parameters. Also, the entropy parameter increases for increasing values of concentration parameter or constant parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. V K Stokes, Phys. Fluids9, 1709 (1966)

    ADS  Google Scholar 

  2. V P Srivastava, Indian J. Pure Appl. Math.34, 1727 (2003)

    Google Scholar 

  3. L M Srivastava, Rheol. Acta25, 638 (1986)

    Google Scholar 

  4. C-W Chang-Jian, H-T Yau and J-L Chen, Appl. Math. Mod.34, 2493 (2010)

    Google Scholar 

  5. K C Valanis and C T Sun, Biorheology6, 85 (1969)

    Google Scholar 

  6. R S Gupta and L G Sharma, Wear48, 257 (1988)

    Google Scholar 

  7. G Ramanaiah and P Sarkar, Wear48, 309 (1978)

    Google Scholar 

  8. H-M Chu, W-L Li and S Y Hu, J. Mech.22, 77 (2006)

    Google Scholar 

  9. T Hayat, M Iqbal, H Yasmin, F E Alsaadi and H Gao, Pramana – J. Phys.85, 125 (2015)

    ADS  Google Scholar 

  10. M Devakar and T K V Iyengar, Nonlinear Anal. Model. Contr. 15, 29 (2010)

    Google Scholar 

  11. N A Khan, F Riaz and N A Khan, Nonlinear Eng. 2, 121 (2013)

    Google Scholar 

  12. S Akhtar, Eur. Phys. J. Plus 131, 401 (2016)

    Google Scholar 

  13. P Graneau, IEEE Trans. Mag.25, 3275 (1989)

    ADS  Google Scholar 

  14. E M Korchevskii and L S Marochnik, Biophysics10, 411 (1965)

    Google Scholar 

  15. A Tsinober, Prog. Astron. Aeron. 123, 327 (1990)

    Google Scholar 

  16. G Herdrich, M Auweter-Kurtz, M Fertig, A Nawaz and D Petkow, Vacuum 80, 1167 (2006)

    ADS  Google Scholar 

  17. R Muthuraj, S Srinivas and R K Selvi, Heat Transf. Asian Res.42, 403 (2013)

    Google Scholar 

  18. A Nayak and G C Dash, J. Eng. Thermophys.24, 283 (2015)

    Google Scholar 

  19. P G Ganesan and H P Rani, Int. J. Therm. Sci.39, 265 (2000)

    Google Scholar 

  20. S Ravi Kumar, Int. J. Bio-Sci. Bio-Technol.7, 65 (2015)

  21. V S Arpaci, Int. J. Heat Mass Transf.11, 871 (1968)

    Google Scholar 

  22. M A Hossain and H S Takhar, Heat Mass Transf.35, 321 (1999)

    ADS  Google Scholar 

  23. A Raptis and C Perdikis, Appl. Mech. Eng. 4, 817 (1999)

    Google Scholar 

  24. K A Yih, Int. Commun. Heat Mass Transf.26, 259 (1999)

    Google Scholar 

  25. A Bejan, Entropy generation optimization (CRC Press, Florida, 1996)

    MATH  Google Scholar 

  26. G Giangaspero and E Sciubba, Energy58, 52 (2013)

    Google Scholar 

  27. V Badescu, J. Non-equilib. Thermodyn. 29, 53 (2004)

    Google Scholar 

  28. H Kockum and A Jernqvist, Trans. Inst. Chem. Eng. 76, 212 (1998)

    Google Scholar 

  29. G Nagaraju, J Srinivas, J V Ramana Murthy and A M Rashad, Heat Transf. Asian Res. 46, 316 (2016)

    Google Scholar 

  30. Z Iqbal, Z Mehmood and B Ahmad, Pramana – J. Phys. 90: 1 (2018)

    Google Scholar 

  31. S O Kareem, S O Adesanya, J A Falade and U E Vincent, Int.J. Pure Appl. Math.115, 311 (2017)

    Google Scholar 

  32. S O Kareem, S O Adesanya and U E Vincent, Alex. Eng. J.55, 925 (2016)

    Google Scholar 

  33. J Y San, W M Worek and Z Lavan, J. Heat Transf. 109, 647 (1987)

    Google Scholar 

  34. M Magherbi, H Abbassi, N Hidouri and B A Ben, Entropy8, 1 (2006)

    ADS  Google Scholar 

  35. M A Sheremet, H F Oztop, I Pop and N Abu-Hamdeh, Entropy18, 1 (2016)

    Google Scholar 

  36. N S Bondareva, M A Sheremet, H F Oztop and N Abu-Hamdeh, Adv. Powder Technol. 28, 244 (2017)

    Google Scholar 

  37. G J Reddy, M Kumar, J C Umavathi and M A Sheremet, Can. J. Phys.96, 978 (2018)

    ADS  Google Scholar 

  38. M Sheremet, I Pop, H F Oztop and N Abu-Hamdeh, Int. J. Num. Meth. Heat Fluid Flow27, 958 (2017)

    Google Scholar 

  39. H S Nawaf, Int. J. Phys. Sci. 8, 729 (2013)

    Google Scholar 

  40. H M Meisam, J. Mech. Eng. Auto.5, 26 (2015)

    Google Scholar 

  41. A A Opanuga, J A Gbadeyan, S A Iyase and H I Okagbue, Pac. J. Sci. Technol. 17, 59 (2016)

    Google Scholar 

  42. D Nemat, Arch. Mecha. Eng. 63, 565 (2016)

    Google Scholar 

  43. S Kimura and A Bejan, ASME J. Heat Transf.105, 916 (1983)

    Google Scholar 

  44. A Bejan, Convection heat transfer, 1st edn (Wiley, New York, 1984)

    MATH  Google Scholar 

  45. O V Trevisan and A Bejan, ASME J. Heat Transf.109, 104 (1987)

    Google Scholar 

  46. G J Reddy, B Kethireddy, J C Umavathi and M A Sheremet, Therm. Sci. Eng. Prog.5, 172 (2018)

    Google Scholar 

  47. V A F Costa, Int. J. Heat Mass Transf.42, 27 (1999)

    Google Scholar 

  48. V A F Costa, Int. J. Heat Mass Transf.43, 3765 (2000)

    Google Scholar 

  49. V A F Costa, Int. J. Heat Mass Transf.46, 1309 (2003)

    Google Scholar 

  50. V A F Costa, Appl. Mech. Rev.59, 126 (2006)

    ADS  Google Scholar 

  51. A Morega, Revue roumaine des Sci. Tech. Electrotech. et Energetique33, 359 (1988)

    Google Scholar 

  52. M Q Brewster, Thermal radiative transfer and properties (John Wiley Sons, New York, 1992)

    Google Scholar 

  53. V K Stokes, Theories of fluids with microstructure (Springer-Verlag, New York, Tokyo, 1984)

    Google Scholar 

  54. H P Rani, G J Reddy and C N Kim, Appl. Math. Mech.34, 985 (2013)

    Google Scholar 

  55. T S Chen and C F Yuh, Int. J. Heat Mass Transf.23, 451 (1980)

    Google Scholar 

  56. M M Alam, M A Alim and M M K Chowdhury, J. Mech. Eng.36, 44 (2006)

    Google Scholar 

  57. S K Aggarwal and A Manhapra, ASME J. Heat Transf. 111, 576 (1989)

    Google Scholar 

Download references

Acknowledgements

The corresponding author G Janardhana Reddy acknowledges the financial support of UGC-BSR Start-up Research Grant. Also the second author Mahesh Kumar wishes to thank DST-INSPIRE (Code No. IF 160028) for the grant of research fellowship and to Central University of Karnataka for providing research facilities. Finally, the authors are very much thankful to all the reviewers for their valuable suggestions and comments to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Janardhana Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, G.J., Kumar, M. & Rani, H.P. Study of entropy generation in transient hydromagnetic flow of couple stress fluid due to heat and mass transfer from a radiative vertical cylinder. Pramana - J Phys 93, 103 (2019). https://doi.org/10.1007/s12043-019-1861-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1861-9

Keywords

PACS Nos

Navigation