Skip to main content
Log in

Multipartite quantum discord and quantum coherence in Heisenberg–Ising bond alternating chain

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The behaviour of multipartite quantum discord and quantum coherence in Heisenberg–Ising bond alternating spin-1 / 2 chain are computed by exploiting the method of quantum renormalisation group (QRG). At larger number of iterations, both quantum coherence and quantum discord have found to exhibit quantum phase transition (QPT) between the spin fluid phase and the Neel phase. In addition, at the critical point, the first derivative of both quantum coherence and quantum discord have shown a non-analytical behaviour. Finally, the scaling behaviour of both quantum coherence and quantum discord has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R Horodecki, P Horodecki, M Horodecki and K Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  2. A Einstein, B Podolsky and N Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  3. H Ollivier and W H Zurek, Phys. Rev. Lett. 88, 017109 (2001)

    Article  Google Scholar 

  4. C H Bennett, D P D Vincenzo, J A Smolin and W K Wootters, Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. M Horodecki, Quantum Inf. Comput.1, 3 (2001)

    MathSciNet  Google Scholar 

  6. W K Wootters, Quantum Inf. Comput.1, 27 (2001)

    Google Scholar 

  7. X Wang, Phys. Rev. A 66, 044305 (2002)

    Article  ADS  Google Scholar 

  8. L Henderson and V Vedral, J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  9. W Deng and Y Deng, Pramana – J. Phys. 91(4), 45 (2018)

    Article  ADS  Google Scholar 

  10. S Khan and N A Khan, Pramana – J. Phys. 87(4), 61 (2016)

    Article  ADS  Google Scholar 

  11. T Baumgratz, M Cramer and M B Plenio, Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  12. A Streltsov, U Singh, H S Dhar, M N Bera and G Adesso, Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Y Yao, X Xiao, L Ge and C P Sun, Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  14. S Sachdev, Quantum phase transitions (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  15. W Wu and J B Xu, Phys. Lett. A 4, 381 (2016)

    Google Scholar 

  16. M Kargarian, R Jafari and A Langari, Phys. Rev. A 79, 042319 (2009)

    Article  ADS  Google Scholar 

  17. R Jafari, M Kargarian, A Langari and M Siahatgar, Phys. Rev. B 78, 214414 (2008)

    Article  ADS  Google Scholar 

  18. G Vidal, J Latorre, E Rico and A Kitaev, Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  19. N Lambert, C Emary and T Brandes. Phys. Rev. Lett. 92, 073602 (2004)

    Article  ADS  Google Scholar 

  20. L Amico, R Fazio, A Osterloh and V Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  Google Scholar 

  21. T Werlang, C Tripp, G Ribeiro and G Rigolin, Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  22. R Jafari, Phys. Lett. A 377, 3279 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. T Werlang, C Tripp, G Ribeiro and G Rigolin, Phys. Rev. A 83, 062334 (2011)

    Article  ADS  Google Scholar 

  24. S R White, Phys. Rev. Lett. 69, 2863 (1992), Phys. Rev. B 48, 10345 (1993)

  25. S R White and D J Scalapino, Phys. Rev. Lett. 80, 1272 (1998)

    Article  ADS  Google Scholar 

  26. A Langari, Phys. Rev. B 69, 100402 (2004)

    Article  ADS  Google Scholar 

  27. R Jafari and A Langari, Physica A 364, 213 (2006)

    Article  ADS  Google Scholar 

  28. R Jafari and A Langari, Phys. Rev. B 76, 014412 (2007)

    Article  ADS  Google Scholar 

  29. F W Ma, S X Liu and X M Kong, Phys. Rev. A 84, 042302 (2011)

    Article  ADS  Google Scholar 

  30. W H Joyia and K Khan, Quantum Inf. Process. 16, 243 (2017)

    Article  ADS  Google Scholar 

  31. A Langari, Phys. Rev. B 58, 14467 (1998)

    Article  ADS  Google Scholar 

  32. W K Zou, N W Li, C Han and D Liu, Pramana – J. Phys. 92(4), 61 (2019)

    Article  ADS  Google Scholar 

  33. E Lieb, T Schultz and D Mattis, Ann. Phys. 16, 407 (1961)

    Article  ADS  Google Scholar 

  34. H Yao, J Li and D Gong, Solid State Commun. 121, 687 (2002)

    Article  ADS  Google Scholar 

  35. J Strecka, L Galisova and O Derzhko, Acta Phys. Polon. A 118, 742 (2010)

    Article  Google Scholar 

  36. T X Dong, J B Qi and G Wei, Chin. Phys. B 22, 020308 (2013)

    Article  Google Scholar 

  37. S Khan and K Khan, Eur. Phys. J. Plus 131, 208 (2016)

    Article  Google Scholar 

  38. W Joyia, S Khan, K Khan and S Alam, Eur. Phys. J. Plus 132, 215 (2017)

    Article  Google Scholar 

  39. L Qiu, G Tang, X Yang and A Wang, Europhys. Lett. 105, 30005 (2014)

    Article  ADS  Google Scholar 

  40. G L Giorgi, B Bellomo, F Galve and R Zambrini, Phys. Rev. Lett. 107, 190501 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wajid Joyia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joyia, W. Multipartite quantum discord and quantum coherence in Heisenberg–Ising bond alternating chain. Pramana - J Phys 93, 94 (2019). https://doi.org/10.1007/s12043-019-1859-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1859-3

Keywords

PACS Nos

Navigation