Skip to main content
Log in

Friedmann–Robertson–Walker accelerating Universe with interactive dark energy

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, we study a cosmological model based on the cosmological principle which exhibits a transition from deceleration to acceleration. We consider baryonic matter dark energy (DE), and ‘curvature’ energy. Both baryonic matter and DE have variable equations of state. It is assumed that DE interacts with and transforms energy to baryonic matter. A Friedmann–Robertson–Walker (FRW) Universe filled with two fluids has been discussed. The model is shown to satisfy current observational constraints. This Universe is at present in a phantom phase after passing through a quintessence phase in the past. Various cosmological parameters regarding the accelerating Universe have been presented. The evolution of DE, Hubble, deceleration parameters, etc. have been described with the aid of figures. Our theoretical results have been compared with the SNe Ia related Union 2.1 compilation 581 data and we have observed that our derived model is in good agreement with the current observational constraints. We have also explored the physical properties of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S Perlmutter et al, Nature 391, 51 (1998)

    ADS  Google Scholar 

  2. S Perlmutter et al, Astrophys. J. 517, 5 (1999)

    Google Scholar 

  3. A G Riess et al, Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  4. J L Tonry et al, Astrophys. J. 594, 1 (2003)

    ADS  Google Scholar 

  5. A Clocchiatti et al, Astrophys. J. 642, 1 (2006)

    ADS  Google Scholar 

  6. P de Bernardis et al, Nature 404, 955 (2000)

    ADS  Google Scholar 

  7. S Hanany et al, Astrophys. J. 493, L53 (2000)

    Google Scholar 

  8. D N Spergel et al, Astrophys. J. Suppl. 148, 175 (2003)

    ADS  Google Scholar 

  9. M Tegmark et al, Phys. Rev. D 69, 103501 (2004)

    ADS  Google Scholar 

  10. U Seljak et al, Phys. Rev. D 71, 103515 (2005)

    ADS  Google Scholar 

  11. J K Adelman-McCarthy et al, Astrophys. J. Suppl. 162, 38 (2006)

    ADS  Google Scholar 

  12. C L Bennett et al, Astrophys. J. Suppl. 148, 1 (2003)

    ADS  Google Scholar 

  13. S W Allen et al, Mon. Not. R. Astron. Soc. 353, 457 (2004)

    ADS  Google Scholar 

  14. N Suzuki et al, Astrophys. J. 746, 85 (2011)

    ADS  Google Scholar 

  15. T Delubac et al, Astron. Astrophys. 574, A59 (2015)

    Google Scholar 

  16. C Blake et al, Mon. Not. R. Astron. Soc. 425, 405 (2012)

    ADS  Google Scholar 

  17. P A R Ade et al, Astron. Astrophys. 594, A14 (2016)

    Google Scholar 

  18. E J Copeland et al, Int. J. Mod. Phys. D 15, 1753 (2006)

    ADS  Google Scholar 

  19. Ø Grøn and S Hervik, Einstein’s general theory of relativity with modern applications in cosmology (Springer Publication, Berlin, 2007)

    MATH  Google Scholar 

  20. S Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    ADS  Google Scholar 

  21. S M Carroll and M Hoffman, Phys. Rev. D 68, 023509 (2003)

    ADS  Google Scholar 

  22. D Huterer and M S Turner, Phys. Rev. D 64, 123527 (2001)

    ADS  Google Scholar 

  23. J Weller and A Albrecht, Phys. Rev. D 65, 103512 (2002)

    ADS  Google Scholar 

  24. D Polarski and M Chevallier, Int. J. Mod. Phys. D 10, 213 (2001)

    ADS  Google Scholar 

  25. E V Linder, Phys. Rev. Lett. 90, 91301 (2003)

    ADS  Google Scholar 

  26. T Padmanabhan and T P Roy Choudhury, Mon. Not. R. Astron. Soc. 344, 823 (2003)

    ADS  Google Scholar 

  27. P S Corasaniti et al, Phys. Rev. D 70, 083006 (2004)

    ADS  Google Scholar 

  28. U Alam, J. Cosmol. Astropart. Phys.0406, 008(2004)

    ADS  Google Scholar 

  29. U Alam et al, Mon. Not. R. Astron. Soc. 344, 1057 (2003)

    ADS  Google Scholar 

  30. A G Riess et al, Astrophys. J. 607, 665 (2004)

    ADS  Google Scholar 

  31. P Astier et al, Astron. Astrophys. 447, 31 (2006)

    ADS  Google Scholar 

  32. D J Eisentein et al, Astrophys. J. 633, 560 (2005)

    ADS  Google Scholar 

  33. C J MacTavish et al, Astrophys. J. 647, 799 (2006)

    ADS  Google Scholar 

  34. E Komatsu et al, Astrophys. J. Suppl. Ser. 180, 330 (2009)

    ADS  Google Scholar 

  35. E Copeland, M Sami and S Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    ADS  Google Scholar 

  36. R K Knop et al, Astrophys. J. 598, 102 (2003)

    ADS  Google Scholar 

  37. G Hinshaw et al, Astrophys. J. Suppl. 180, 225 (2009)

    ADS  Google Scholar 

  38. J Sola and A Gomej-Valent, Int. J. Mod. Phys. D 24, 1541003 ( 2015)

    ADS  Google Scholar 

  39. D Begue, C Stahl and S S Xue, Nucl. Phys. B 940, 312 (2019)

    ADS  Google Scholar 

  40. G Risaliti and E Lusso, Nat. Astron. 3, 272 (2019)

    ADS  Google Scholar 

  41. A G Riess et al, arXiv:1903.07603 [astro-ph.CO]

  42. S S Xue, Nucl. Phys B 897, 326 (2015)

    ADS  Google Scholar 

  43. E G M Ferriera, Phys. Rev. D 95, 043520 (2017)

    ADS  Google Scholar 

  44. T S Koivisto, E N Saridakis and N Tamanini, J. Cosmol. Astropart. Phys. 1509, 047 (2015)

    ADS  Google Scholar 

  45. S Kumar and R C Nunes, Phys. Rev. D 94, 123511 (2016)

    ADS  Google Scholar 

  46. S Kumar and R C Nunes, Phys. Rev. D 96, 103511 (2017)

    ADS  Google Scholar 

  47. B Wang, E Abdulla, F Atrio-Varandela and D Pavon, Rep. Prog. Phys. 79, 096901 (2016)

    ADS  Google Scholar 

  48. S K Banik and K Bhuyan, Pramana – J. Phys. 88: 26 (2017)

    ADS  Google Scholar 

  49. B S Choudhury, H S Mondal and D Chatterjee, Pramana – J. Phys. 90: 55 (2018)

    ADS  Google Scholar 

  50. X F Zhang and H H Liu, Chin. Phys. Lett. 26, 109803 (2009)

    ADS  Google Scholar 

  51. N M Liang, C J Gao and S N Zhang, Chin. Phys. Lett. 26, 069501 (2009)

    ADS  Google Scholar 

  52. C Wang, Y B Wu and F Liu, Chin. Phys. Lett. 26, 029801 (2009)

    ADS  Google Scholar 

  53. H Amirhashchi, A Pradhan and B Saha, Chin. Phys. Lett. 28, 039801 (2011)

    Google Scholar 

  54. H Amirhashchi, A Pradhan and H Zainuddin, Int. J. Theor. Phys. 50, 3529 (2011)

    Google Scholar 

  55. A Pradhan, H Amirhashchi and B Saha, Astrophys. Space Sci. 333, 343 (2011)

    ADS  Google Scholar 

  56. B Saha, H Amirhashchi and A Pradhan, Astrophys. Space Sci. 342, 257 (2012)

    ADS  Google Scholar 

  57. A Pradhan, Indian J. Phys. 88, 215 (2014)

    ADS  Google Scholar 

  58. S Kumar, Astrophys. Space Sci. 332, 449 (2011)

    ADS  Google Scholar 

  59. L Amendola, G Camargo Campos and R Rosenfeld, Phys. Rev. D 75, 083506 (2007)

    ADS  Google Scholar 

  60. Z K Guo, N Ohta and S Tsujikawa, Phys. Rev. D 76, 023508 (2007)

    ADS  Google Scholar 

  61. M S Berman, II Nuovo Cimento B 74, 1971 (1983)

    Google Scholar 

  62. M S Berman and F M Gomide, Gen. Relativ. Gravit. 20, 191 (1988)

    ADS  Google Scholar 

  63. A Pradhan, H Amirhashi and B Saha, Int. J. Theor. Phys. 50, 2923 (2011)

    Google Scholar 

  64. A Pradhan, Commun. Theor. Phys. 55, 931 (2011)

    Google Scholar 

  65. D N Spergel et al, Astrophys. J. Suppl.170, 377 (2007)

    ADS  Google Scholar 

  66. D Komatsu et al, Astrophys. J. Suppl. Ser. 180, 330 (2009)

    ADS  Google Scholar 

  67. T Padmanabhan and T R Choudhury, Mon. Not. R. Astron. Soc. 244, 823 (2003)

    ADS  Google Scholar 

  68. L Amendola, Mon. Not. R. Astron. Soc. 342, 221 (2003)

    ADS  Google Scholar 

  69. A G Riess et al, Astrophys. J. 560, 49 (2001)

    ADS  Google Scholar 

  70. Abdusattar and S R Prajapati, Astrophys. Space Sci. 335, 657 (2011)

    ADS  Google Scholar 

  71. O Akarsu et al, J. Cosmol. Astropart. Phys. 01, 022 (2014)

    ADS  MathSciNet  Google Scholar 

  72. L. Avile′s et al, J. Phys. Conf. Ser.70, 012010 (2016)

    Google Scholar 

  73. S Kumar, Grav. Cosmol. 19, 284 (2013)

    ADS  Google Scholar 

  74. A Pradhan and R Jaisaval, Int. J. Geom. Methods Mod. Phys. 15, 1850076 (2018)

    MathSciNet  Google Scholar 

  75. C R Mahanta and N Sharma, New Astron. 57, 70 (2017)

    ADS  Google Scholar 

  76. A K Yadav et al, Int. J. Theor. Phys. 54, 1671 (2015)

    Google Scholar 

  77. R Zia, D C Maurya and A Pradhan, Int. J. Geom. Methods Mod. Phys. 15, 1850168 (2018)

    MathSciNet  Google Scholar 

  78. A K Yadav and V Bhardwaj, Res. Astron. Astrophys. 18, 64 (2016)

    ADS  Google Scholar 

  79. B Mishra and S K Tripathi, Mod. Phys. A 30, 1550175 (2015)

    ADS  Google Scholar 

  80. U K Sharma, R Zia and A Pradhan, J. Astrophys. Astron. 40, 2 (2019)

    ADS  Google Scholar 

  81. P H R S Moraes, Astrophys. Space Sci. 352, 273(2014)

    ADS  Google Scholar 

  82. P H R S Moraes, G Ribeiro and R A C Correa, Astrophys. Space Sci. 361, 227 (2016)

    ADS  Google Scholar 

  83. P H R S Moraes and P K Sahoo, Eur. Phys. J. C 77, 480 (2017)

    ADS  Google Scholar 

  84. S Capozziello et al, Phys. Rev. D 90, 044016 (2014)

    ADS  Google Scholar 

  85. S Capozziello et al, Phys. Rev. D 91, 124037 (2015)

    ADS  MathSciNet  Google Scholar 

  86. O Farooq and B Ratra, Astrophys. J. 766, L7 (2013)

    ADS  Google Scholar 

  87. O Farooq et al, Astrophys. J. 835, 26 (2017)

    ADS  Google Scholar 

  88. W L Freedman et al, Astrophys. J. 553, 47 (2001)

    ADS  Google Scholar 

  89. S H Suyu et al, Astrophys. J. 711, 201 (2010)

    ADS  Google Scholar 

  90. N Jarosik et al, Astrophys. J. Suppl. 192, 14 (2010)

    ADS  Google Scholar 

  91. A G Riess et al, Astrophys. J. 730, 119 (2011)

    ADS  Google Scholar 

  92. F Beutler et al, Mon. Not. R. Astron. Soc. 416, 3017 (2011)

    ADS  Google Scholar 

  93. S Kumar, Mon. Not. Astron. Soc. 422, 2532 (2012)

    ADS  Google Scholar 

  94. C Zhang et al, Res. Astron. Astrophys. 14, 1 (2014)

    ADS  Google Scholar 

  95. D Stern et al, J. Cosmol. Astropart. Phys. 1002, 008 (2010)

    ADS  Google Scholar 

  96. M Moresco, Mon. Not. R. Astron. Soc. 450, L16(2015)

    ADS  Google Scholar 

  97. J Simon et al, Phys. Rev. D 71, 123001 (2005)

    ADS  Google Scholar 

  98. N Benitez et al, Astrophys. J. 577, L1 (2002)

    ADS  Google Scholar 

  99. M Turner and A G Riess, Astrophys. J. 569, 18 (2002)

    ADS  Google Scholar 

  100. A R Liddle and D H Lyth, Cosmological inflation and large-scale structure (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  101. G K Goswami, R N Dewangan and A K Yadav, Astrophys. Space Sci. 361, 119 (2016)

    ADS  Google Scholar 

  102. G K Goswami, R N Dewangan, A K Yadav and A Pradhan, Astrophys. Space Sci. 361, 47 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

G K Goswami and A Pradhan sincerely acknowledge the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India for providing facilities where part of this work was completed during a visit. The authors also thank the editor and the anonymous referee for valuable comments which have improved the paper to the present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudh Pradhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, G.K., Pradhan, A. & Beesham, A. Friedmann–Robertson–Walker accelerating Universe with interactive dark energy. Pramana - J Phys 93, 89 (2019). https://doi.org/10.1007/s12043-019-1856-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1856-6

Keywords

PACS Nos

Navigation