Skip to main content
Log in

Global stability analysis of axisymmetric boundary layer: Effect of axisymmetric forebody shapes

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper presents the effect of axisymmetric forebody shapes on the global stability characteristics of axisymmetric boundary layer developed on a circular cylinder. Axisymmetric forebodies like sharp-cone, ellipsoid, and paraboloid with a fineness ratio (FR) of 2.5, 5.0 and 7.5 are considered. The boundary layer starts to develop at a stagnation point on the forebody geometry and grows in spatial directions. The inflow velocity component is parallel to the axis of the cylinder, and hence the angle of attack is zero. The base flow is axisymmetric, non-parallel and non-similar. The linearised Navier–Stokes equations are derived in the cylindrical polar coordinates for the disturbance flow components. The discretised linearised Navier–Stokes equations along with appropriate boundary conditions form a general eigenvalue problem and it has been solved using Arnoldi’s algorithm. The global temporal modes have been computed by solving the two-dimensional eigenvalue problem. The extent of a favourable pressure gradient developed in streamwise direction depends on the shape of axisymmetric forebody. The temporal and spatial growth of the disturbances has been computed for axisymmetric (\(N = 0\)) mode for different Reynolds numbers (Re). The forebody shapes have a significant effect on the base flow and stability characteristics at low Re.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J S Parsons and R E Goodson, Technical report H, Automatic Control Center, School of Mechanical Engineering (Purdue University, 1972)

  2. V Narayanan and R Govindarajan, Pramana – J. Phys. 64(3), 323 (2005)

  3. M Casarella, T C Shen and B E Bowers, Ship Acoustic Dept. R & D Report 77 (1977)

  4. R L James, B H Navran and R A Rozenddal, NASA CR-166051 (1984)

  5. B J Holmes, C J Obara and L P Yip, NASA TP-2256 (1984)

  6. B H Carmichael, Underwater missile propulsion (Compass Publications, 1966)

    Google Scholar 

  7. V Theofilis, Prog. Aerosp. Sci. 39, 249 (2003)

    Article  Google Scholar 

  8. F Alizard and J C Robinet, Phys. Fluids 19, 114105 (2007)

    Article  ADS  Google Scholar 

  9. E Akervik, U Ehrenstein, F Gallaire and D S Henningson, Eur. J. Mech. B \(/\)Fluids 27, 501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. G N V Rao, J. Appl. Math. Phys. 25, 63 (1974)

    Google Scholar 

  11. O R Tutty and W G Price, Phys. Fluids 14, 628 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. V Narayanan, Stability and transition in boundary layer: Effect of transverse curvature and pressure gradients, Ph.D. thesis (Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 2005)

  13. R Bhoraniya and V Narayanan, Theor. Comput. Fluid Dyn. 32, 425 (2018)

    Article  MathSciNet  Google Scholar 

  14. R Bhoraniya and V Narayanan, J. Phys.: Conf. Ser. 822, 012018 (2017)

    Google Scholar 

  15. R Bhoraniya and V Narayanan, Phys. Rev. Fluids 2, 063901 (2017)

    Article  Google Scholar 

  16. U Ehrenstein and F Gallaire, J. Fluid Mech. 536, 209 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. H Fasel, U Rist and U Konzelmann, AIAA J. 28, 29 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  18. G Swaminathan, K Shau, A Sameen and R Govindarajan, Theor. Comput. Fluid Dyn25, 53 (2011)

    Article  Google Scholar 

  19. R S Lin and M R Malik, J. Fluid Mech. 311, 239 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  20. R S Lin and M R Malik, J. Fluid Mech. 333, 125 (1997)

    Article  ADS  Google Scholar 

  21. V Theofilis, P W Duck and J Owen, J. Fluid Mech. 505, 249 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  22. V Theofilis, Theor. Comput. Fluid Dyn. 31, 623 (2017)

    Article  Google Scholar 

  23. M R Malik, J. Comput. Phys. 86(2), 372 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Bhoraniya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoraniya, R., Narayanan, V. Global stability analysis of axisymmetric boundary layer: Effect of axisymmetric forebody shapes. Pramana - J Phys 93, 101 (2019). https://doi.org/10.1007/s12043-019-1855-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1855-7

Keywords

PACS Nos

Navigation