Skip to main content
Log in

High polarisation extinction ratio of the TM-pass polariser with silicon carbide / graphene / silicon multilayers

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We propose a compact TM-pass polariser, consisting of silicon (Si) / silicon carbide (SiC) / Si layers. Two graphene sheets are sandwiched between the Si and SiC layers as the interlayer to enhance the interaction with light. The loss characteristics have been investigated by using the finite-difference time-domain (FDTD) method. The proposed structure exhibits a low insertion loss (IL) of \(\sim \)0.25 \(\hbox {dB}\) and a high polarisation extinction ratio (PER) of \(\sim \)57 \(\hbox {dB}\). To verify the robustness of the proposed polariser, we analyse the fabrication tolerance of the waveguide width and the height of the Si and SiC layers. The polariser shows great fabrication error tolerance. In addition, by employing a \(100\,\mu \hbox {m}\) long waveguide, a PER of 48.3–59.4 dB is obtained in the visible regime ranging from 400 to 600 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A Rahim, E Ryckeboer, A Subramanian, S Clemmen, B Kuyken, A Dhakal, A Raza, A Hermans and M Muneeb, J. Light. Technol.35, 639 (2017)

    Article  ADS  Google Scholar 

  2. Q Bao and K Loh, ACS Nano6, 3677 (2012)

    Article  Google Scholar 

  3. S Jahani and Z Jacob, Nat. Nanotechnol.11, 23 (2016)

    Article  ADS  Google Scholar 

  4. B Ni and J Xiao, IEEE J. Quantum Electron.53, 1 (2017)

    Article  ADS  Google Scholar 

  5. M Cappellar, Annu. Rev. Astron. Astr.54, 597 (2016)

    Article  ADS  Google Scholar 

  6. Y Cheng, C Wu, Z Cheng and R Gong, Prog. Electromagn. Res.155, 105 (2016)

    Article  Google Scholar 

  7. H Xu, S Tang, G Wang, T Cai, W Huang, Q He, S Sun and L Zhou, IEEE Trans. Antennas Propag.64, 3676 (2016)

    Article  ADS  Google Scholar 

  8. D Kim, M Lee, Y Kim and K Kim, Opt. Express24, 21560 (2016)

    Article  ADS  Google Scholar 

  9. K Liu, J Varghese, J Gerasimov, A Polyakov, M Shuai, J Su, D Chen, W Zajaczkowski, A Marcozzi and W Pisula, Nat. Commun.7, 11476 (2016)

    Article  ADS  Google Scholar 

  10. S Kim, B Kim, J Lee, H Shin, Y Park and J Park, Mater. Sci. Eng. R.99, 1 (2016)

    Article  Google Scholar 

  11. V Sharma, D Madaan and A Kapoor, IEEE Photon. Technol. Lett.29, 559 (2017)

    Article  ADS  Google Scholar 

  12. Z Ge and S Wu, Appl. Phys. Lett.22, 121104 (2008)

    Article  ADS  Google Scholar 

  13. T Sun, J Kim, J Yuk, A Zettl, F Wang and C Chang-Hasnain, Opt. Express24, 26035 (2016)

    Article  ADS  Google Scholar 

  14. L Yang, T Hu, R Hao, C Qiu, C Xu, H Yu, X Jiang, Y Li and J Yang, Opt. Lett.38, 2512 (2013)

    Article  ADS  Google Scholar 

  15. Z Huang, H Park, E Parrott, H Cha and E Pickwell-MacPherson, IEEE Photon. Technol. Lett.25, 81 (2013)

    Article  ADS  Google Scholar 

  16. B Lee, A Mousavian, M Paul, Z Thompson, A Stickel, D McCuen, E Jang, Y Kim, J Kyoung and D Kim, Appl. Phys. Lett.108, 241111 (2016)

    Article  ADS  Google Scholar 

  17. A Geim, Science324, 1530 (2009)

    Article  ADS  Google Scholar 

  18. W Su and B Chen, Pramana – J. Phys.89: 37 (2017)

    Article  ADS  Google Scholar 

  19. S M Demir, Y Yuksek and C Sabah, Pramana – J. Phys.90: 65 (2018)

    Article  ADS  Google Scholar 

  20. K Novoselov, A Geim, S Morozov, D Jiang, M Katsnelson, I Grigorieva, S Dubonos and A Firsov, Nature438, 197 (2005)

    Article  ADS  Google Scholar 

  21. K Bhatt, C Rani, M Vaid, P Kumar, S Kumar, S Shriwastawa, S Sharma, R Singh and C C Tripathi, Pramana – J. Phys.90: 75 (2018)

    Article  ADS  Google Scholar 

  22. L Ming, Y Xiaobo, U Erick, G Baisong, Z Thomas, J Long, W Feng and Z Xiang, Nature474, 64 (2011)

    Article  Google Scholar 

  23. J Kim and C Choi, Opt. Express20, 3556 (2012)

    Article  ADS  Google Scholar 

  24. D Oliveira, E Rafael and J Christiano, Sci. Rep. UK5, 16949 (2015)

    Article  Google Scholar 

  25. X Yin, Z Tian, C Lin and L Xun, Opt. Lett.40, 1733 (2015)

    Article  ADS  Google Scholar 

  26. X Hu and W Jian, IEEE Photon. J.9, 1 (2017)

    Google Scholar 

  27. E D Palik, Handbook of optical constants of solids (Academic Press, San Diego, 1998).

    Google Scholar 

  28. S Bahadori-Haghighi, R Ghayour and M Sheikhi, J. Light. Technol.35, 2211 (2017)

    Article  ADS  Google Scholar 

  29. P Chen, J Soric, Y Padooru, H Bernety, A Yakovlev and A Alu, New J. Phys.15, 123029 (2013)

    Article  ADS  Google Scholar 

  30. F Wang, Y Zhang, C Tian, C Girit, A Zettl, M Crommie and Y Shen, Science320, 206 (2008)

    Article  ADS  Google Scholar 

  31. M Kwon, IEEE Photon. J.6, 1 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grant 61705058, Natural Science Foundation of Jiangsu Province under Grant BK20170302, Changzhou Science and Technology Program under Grant CJ20179023 and Fundamental Research Fund for Central Universities of China under Grant 2019B21314.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Su, W. & Liu, X. High polarisation extinction ratio of the TM-pass polariser with silicon carbide / graphene / silicon multilayers. Pramana - J Phys 93, 91 (2019). https://doi.org/10.1007/s12043-019-1853-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1853-9

Keywords

PACS Nos

Navigation