Skip to main content
Log in

Consequences of chemical reaction in temperature-dependent thermal conductivity fluid flow by a rotating disk with variable thickness

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper examines the steady flow due to a rotating disk with variable thickness. Equations are modelled by considering the homogeneous–heterogeneous reactions and variable thermal conductivity. The modified Von Karman transformations are utilised to convert the governing partial differential equations into dimensionless nonlinear ordinary differential equations. Convergent series solutions are computed. The impact of relevant parameters on flow fields is computed and interpreted. It is predicted that an increase in disk thickness index decreases the axial velocity while increases the radial and tangential velocities. The Nusselt number enhances by increasing the thickness parameter of a disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. T V Karman, Z. Angew. Math. Mech. 1, 233 (1921)

    Article  Google Scholar 

  2. K Stewartson, Proc. Camb. Phil. Soc. 49, 333 (1953)

    Article  ADS  Google Scholar 

  3. S K Kumar, W I Tacher and L T Watson, Appl. Math. Model. 13, 494 (1989)

    Article  Google Scholar 

  4. C Y Ming, L C Zheng and X X Zhang, Int. Commun. Heat Mass 38, 280 (2011)

    Article  Google Scholar 

  5. M Turkyilmazoglu, Comput. Fluid 90, 51 (2014)

    Article  Google Scholar 

  6. P V S Narayana, B Venkateswarlu and S Venkataramana, Heat Transf. Asian Res. 44, 21101 (2015)

    Google Scholar 

  7. S Xun, J Zhao, L Zheng, X Chen and X Zhang, Int. J. Heat Mass Transf. 103, 1214 (2016)

    Article  Google Scholar 

  8. D Pal and S Chatterjee, Appl. Math. Comput. 219, 7556 (2013)

    MathSciNet  Google Scholar 

  9. K Vajravelu, K V Prasad and C Ng, Nonlinear Anal. Real World Appl. 14, 455 (2013)

    Article  MathSciNet  Google Scholar 

  10. S A Shehzad, A Alsaedi, T Hayat and M S Alhuthali, PLoS One 8, e78240 (2013)

    Article  ADS  Google Scholar 

  11. T Hayat, S A Shehzad and A Alsaedi, Appl. Math. Mech. 34, 823 (2013)

    Article  Google Scholar 

  12. T Hayat, A Shafiq, A Alsaedi and S Asghar, AIP Adv. 5, 087108 (2015)

    Article  ADS  Google Scholar 

  13. B Venkateswarlu and P V S Narayana, Front. Heat Mass Transf. 7, 16 (2016)

    Google Scholar 

  14. T Hayat, M I Khan, M Farooq, A Alsaedi, M Waqas and T Yasmeen, Int. J. Heat Mass Transf. 99, 702 (2016)

    Article  Google Scholar 

  15. G Sarojamma, R V Lakshmi, P V S Narayana and K Vajravelu, J. Appl. Comput. Mech. 5, 441 (2019)

    Google Scholar 

  16. I Shufrin and M Eisenberger, Int. J. Solids Struct. 42, 1225 (2005)

    Article  Google Scholar 

  17. T G Fang, J Zhang and Y F Zhong, Appl. Math. Comput. 218, 7241 (2012)

    MathSciNet  Google Scholar 

  18. S V Subhashini, R Sumathi and I Pop, Int. Commun. Heat Mass 48, 61 (2013)

    Article  Google Scholar 

  19. T Hayat, M Farooq, A Alsaedi and F AlSolamy, AIP Adv. 5, 087159 (2015)

    Article  ADS  Google Scholar 

  20. T Hayat, G Bashir, M Waqas and A Alsaedi, J. Mol. Liq. 44, 844 (2016)

    Google Scholar 

  21. J H Merkin, Math. Comput. Model. 24, 125 (1996)

    Article  MathSciNet  Google Scholar 

  22. M A Chaudhary and J H Merkin, Fluid Dyn. Res. 16, 311 (1995)

    Article  ADS  Google Scholar 

  23. W A Khan and I Pop, Commun. Nonlinear Sci. Numer. Simul. 15, 3435 (2010)

    Article  ADS  Google Scholar 

  24. T Hayat, M Awais, S Ambreen and A A Hendi, Nonlinear Anal. Modell. Control 17, 47 (2012)

    Article  Google Scholar 

  25. W A Khan and I Pop, ASME J. Heat Transf. 134, 1 (2012)

    Google Scholar 

  26. T Hayat, A Tanveer, F Alsaadi and N D Alotaibi, AIP Adv. 5, 067172 (2015)

    Article  ADS  Google Scholar 

  27. T Hayat, M Imtiaz, A Alsaedi and S Almezal, J. Magn. Magn. Mater. 401, 296 (2016)

    Article  ADS  Google Scholar 

  28. T Hayat, S Qayyum, M Imtiaz and A Alsaedi, PLoS One 11, e0148662 (2016)

    Article  Google Scholar 

  29. T Hayat, K Muhammad, M I Khan and A Alsaedi, Pramana – J. Phys. 92: 57 (2019)

    Article  ADS  Google Scholar 

  30. S J Liao, Beyond perturbation (Springer and Higher Education Press, Heidelberg, 2012)

  31. S Abbasbandy, M Yurusoy and H Gulluce, Math. Comput. Appl. 19, 124 (2014)

    MathSciNet  Google Scholar 

  32. M Turkyilmazoglu, Filomat 30, 1633 (2016)

    Article  MathSciNet  Google Scholar 

  33. Y Lin, L Zheng and G Chen, Powder Technol. 274, 332 (2016)

    Google Scholar 

  34. S Qayyum, M Imtiaz, A Alsaedi and T Hayat, Chin. J. Phys.56, 2404 (2018)

    Article  Google Scholar 

  35. M Imtiaz, A Kiran, T Hayat and A Alsaedi, J. Braz. Soc. Mech. Sci. Eng. 41, 149 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Imtiaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imtiaz, M., Shahid, F., Hayat, T. et al. Consequences of chemical reaction in temperature-dependent thermal conductivity fluid flow by a rotating disk with variable thickness. Pramana - J Phys 93, 95 (2019). https://doi.org/10.1007/s12043-019-1848-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1848-6

Keywords

PACS Nos

Navigation