Skip to main content
Log in

Combined effects of free convection and chemical reaction with heat–mass flux conditions: A semianalytical technique

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper discusses the effect of heat and mass flux on the natural convective laminar flow of a viscous incompressible fluid under the influence of radiation, magnetic field and Joule heating. The partial differential equations related to the problem have been changed as a set of ordinary differential equations employing non-dimensional quantities. Semianalytical approach such as the Adomian decomposition method (ADM) is employed to solve the system of ordinary differential equations. The behaviour of characterising parameters on the velocity, heat and mass transfer profiles, and the engineering quantities of interest, i.e. skin friction, heat and mass transfer rates and other indices are presented through graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R A Henkes and W M Hoogendoorn, Int. J. Heat Mass Transf.32(1), 147 (1989)

    ADS  Google Scholar 

  2. M A Seddek, Acta Mech.177, 1 (2005)

    Google Scholar 

  3. H S Takhar, S R Gorla and V M Soundalgekar, Int. J. Numer. Methods Heat Fluid Flow6, 77 (1996)

    Google Scholar 

  4. H T Lin and C M Wu, Heat Mass Transfer30, 369 (1995)

    ADS  Google Scholar 

  5. A R Bestman and S K Adjepong, Astrophys. Space Sci.143(1), 73 (1998)

    ADS  Google Scholar 

  6. P Ganesan and P Loganathan, J. Eng. Phys. Thermophys.75(4), 899 (2002)

    Google Scholar 

  7. R Muthucumaraswamy and T Kulandaivel, Forsch. Ingenieurwes.68, 101 (2003)

    Google Scholar 

  8. R Muthucumaraswamy and P Ganesan, Acta Mech.147, 45 (2001)

    Google Scholar 

  9. A J Chamkha, Int. J. Eng. Sci.42, 217 (2004)

    Google Scholar 

  10. S Mohammed Ibrahim and K Suneetha, J. Comput. Appl. Res. Mech. Eng.5(2), 83 (2016)

    Google Scholar 

  11. P Gurivi Reddy, M C Raju, B Mamatha and S V K Varma, Appl. Math. (Irvine)7, 638 (2016)

    Google Scholar 

  12. P L Chambré and J D Young, Phys. Fluids1, 48 (1958)

    ADS  Google Scholar 

  13. T S Chen and C F Yuh, Int. J. Heat Mass Transf.23(4), 451 (1980)

    Google Scholar 

  14. M S Babu and P V Satyanarayana, JP J. Heat Mass Transf.3, 219 (2009)

    Google Scholar 

  15. B M Rao, G V Reddy and M C Raju, IOSR J. Appl. Phys.6, 22 (2013)

    Google Scholar 

  16. P K Rout, S N Sahoo, G C Dash and S R Mishra, Alexandria Eng. J.55(3), 2967 (2016)

    Google Scholar 

  17. S Jena, S R Mishra and G C Dash, Int. J. Appl. Comput. Math.25(4), 1 (2016)

    Google Scholar 

  18. J C Misra and S D Adhikary, Alexandria Eng. J.55(1), 287 (2016)

    Google Scholar 

  19. R S Tripathy, G C Dash, S R Mishra and S Baag, Alexandria Eng. J.54, 673 (2015)

    Google Scholar 

  20. S Ahmed, K Kalita and A J Chamkha, Ain Shams Eng. J.6, 691 (2015)

    Google Scholar 

  21. V M Soundalgekar, Int. J. Heat Mass Transf.15(6), 1253 (1972)

    Google Scholar 

  22. P M Kishore, V Rajesh and S Vijayakumar Verma, Theor. Appl. Mech.39(2), 99 (2012)

    ADS  MathSciNet  Google Scholar 

  23. E R G Eckert and R M Drake, Heat and mass transfer, 2nd edn (Tata McGraw-Hill, New Delhi, 1979)

    Google Scholar 

  24. A M Hossain, M A Alim and D A S Rees, Int. J. Heat Mass Transf.42, 181 (1999)

    Google Scholar 

  25. O D Makinde, Int. Commun. Heat Mass Transfer32(10), 1411 (2005)

    Google Scholar 

  26. P R Babu, J A Rao and S Sheri, J. Appl. Fluid Mech.7, 641 (2014)

    Google Scholar 

  27. K J Girish, Int. J. Sci. Eng. Technol. Res.2(4), 881 (2013)

    Google Scholar 

  28. P Mangathai, G V R Reddy and B R Reddy, Int. J. Adv. Comput. Math. Sci.7(1), 1 (2015)

    Google Scholar 

  29. M Kayalvizhi, R Kalaivanan, N Vishnu Ganesh, B Ganga and A K Abdul Hakeem, Ain Shams Eng.7, 791 (2016)

    Google Scholar 

  30. S R Mishra, G C Dash and M Acharya, Int. J. Heat Mass Transf.57(2), 433 (2013)

    Google Scholar 

  31. F M Abbasi, S A Shehzad, T Hayat, A Alsaedi and M A Obid, AIP Adv.5(3), 1 (2015)

    Google Scholar 

  32. E Geetha and R Muthucumaraswamy, Int. J. Adv. Sci. Technol. Eng. Manage. Sci. 2(6), 1 (2016)

    Google Scholar 

  33. T Hayat, I Ullah, T Muhammad, A Alsaedi and S A Shehzad, Chin. Phys. B 25(7), 1 (2016)

    Google Scholar 

  34. G S Seth, G K Mahato, S Sarkar and M S Ansari, Int. J. Appl. Math. Res. 1(4), 462 (2012)

    Google Scholar 

  35. G S Seth, S Sarkar and G K Mahato, Int. J. Heat Technol.31(1), 85 (2013)

    Google Scholar 

  36. G S Seth, B Kumbhakar and S Sarkar, Int. J. Heat Technol. 32(1–2), 87 (2014)

    Google Scholar 

  37. G S Seth, S Sarkar and R Nandkeolyar, J. Appl. Fluid Mech. 8(3), 623 (2015)

    Google Scholar 

  38. G S Seth, B Kumbhakar and R Sharma, J. Egypt Math. Soc. 24(3), 471 (2016)

    Google Scholar 

  39. G S Seth, M K Mishra and A J Chamkha, J. Nanofluids 5(4), 511 (2016)

    Google Scholar 

  40. S Sarkar and G S Seth, J. Aerospace Eng. 30(1), 11 (2016), Article ID: 04016081

    Google Scholar 

  41. C L Cogley, W G Vincenti and E S Gilles, Am. Inst. Aeronaut. Astronaut.6(3), 551 (1968)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. G C Sharma, Agra University, Agra, India for his help and valuable comments during the preparation of this paper and the authors are also grateful to the learned reviewers for their constructive suggestions which largely improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Prakash Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.P., Mishra, S.R. Combined effects of free convection and chemical reaction with heat–mass flux conditions: A semianalytical technique. Pramana - J Phys 93, 99 (2019). https://doi.org/10.1007/s12043-019-1842-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1842-z

Keywords

PACS Nos

Navigation