Skip to main content
Log in

Chemically reactive flow of thixotropic nanofluid with thermal radiation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This article addresses the flow of a thixotropic liquid with nanomaterials due to a stretching sheet of variable thickness. The stimulus effects of the heat source / sink and first-order chemical reaction are retained. Convective conditions of heat and mass transfer are also considered at the boundary. Unlike the classical consideration, the linear thermal radiation aspect is examined. The influence of emergent flow, heat and mass parameters on velocity, concentration and temperature fields are shown graphically. It is also noted that the velocity of the fluid significantly favours the non-Newtonian parameters. For higher values of radiation and heat source / sink parameter, the temperature rises. Moreover, a novel investigation on heat and mass transfer rates subject to nanomaterials (i.e. Brownian motion and thermophoresis) in the liquid has been carried out. Nonlinear systems are solved by the optimal homotopy analysis method (OHAM). Convergence analysis has been executed and the optimal values are computed. The main advantage of the proposed technique is that it can be directly utilised in highly nonlinear systems without using discretisation, linearisation and round-off errors. The table shows the results of the error analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. M Rashid, T Hayat and A Alsaedi, Appl. Nanosci. (2019), https://doi.org/10.1007/s13204-019-00961-2

    Article  Google Scholar 

  2. M Irfan and M Khan, Appl. Nanosci. (2019), https://doi.org/10.1007/s13204-019-01012-6

    Article  Google Scholar 

  3. F Mashali, E M Languri, J Davidson, D Kerns and G Cunningham, Int. J. Heat Mass Transf. 129, 1123 (2019)

    Article  Google Scholar 

  4. T Hayat, M Rashid and A Alsaedi, Appl. Nanosci. (2019), https://doi.org/10.1007/s13204-019-01028-y

    Article  Google Scholar 

  5. J H Lee, Y Jung, J H Kim, S J Yang and T J Kang, Carbon. N. Y. 147, 559 (2019)

    Article  Google Scholar 

  6. S U S Choi, Enhancing thermal conductivity of fluids with nanoparticles (ASME, FEC 231\(/\)MD, USA, 1995) pp. 99–105

  7. J Buongiorno, J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  8. M J Babu and N Sandeep, Adv. Powder Technol. 27, 2039 (2016)

    Article  Google Scholar 

  9. M H Ahmadi, A Mirlohi, M A Nazari and R Ghasempour, J. Mol. Liq. 265, 181 (2018)

    Article  Google Scholar 

  10. M J Uddin, W A Khan and A I M Ismail, Proc. Power Res. 7, 60 (2018)

    Article  Google Scholar 

  11. W A Khan, A S Alshomrani, A K Alzahrani, M Khan and M Irfan, Pramana – J. Phys. (2018), https://doi.org/10.1007/s12043-018-1634-x

    Article  Google Scholar 

  12. T Hayat, K Rafique, T Muhammad, A Alsaedi and M Ayub, Results Physiother. 8, 26 (2018)

    Article  ADS  Google Scholar 

  13. S Sadeqi, N Khabazi and K Sadeghy, Commun. Nonlinear Sci. Numer. Simul. 16, 711 (2011)

    Article  ADS  Google Scholar 

  14. H P A Deus and G S P Dupim, Phys. Lett. A 6, 478 (2013)

    Article  Google Scholar 

  15. S A Shehzad, T Hayat, A Asghar and A Alsaedi, J. Appl. Fluid Mech. 8, 465 (2015)

    Article  Google Scholar 

  16. T Hayat, M Waqas, M I Khan and A Alsaedi, Int. J. Heat Mass Transf. 102, 1123 (2016)

    Article  Google Scholar 

  17. M Zubair, M Waqas, T Hayat, M Ayub and A Alsaedi, Results Physiother. 8, 1023 (2018)

    Article  ADS  Google Scholar 

  18. B Abedi, R Mendes and P R S Me, J. Pet. Sci. Eng. 174, 437 (2019)

    Article  Google Scholar 

  19. S Qayyum, T Hayat, A Alsaedi and B Ahmad, Results Physiother. 7, 2124 (2017)

    Article  ADS  Google Scholar 

  20. T Fang, J Zhang and Y Zhong, Appl. Math. Comput. 218, 7241 (2012)

    MathSciNet  Google Scholar 

  21. T Hayat, S Qayyum, A Alsaedi and B Ahmad, Results Physica B: Condens. Matter 537, 267 (2018)

    Article  ADS  Google Scholar 

  22. Y S Daniel, Z A B Aziz, Z Ismail and F Salah, J. Comput. Des. Eng. 5, 232 (2018)

    Google Scholar 

  23. Z Zhang, F Huang, Y Cao and C Yan, Int. J. Impact Eng. 120, 79 (2018)

    Article  Google Scholar 

  24. T Hayat, M Rashid, M I Khan and A Alsaedi, Results Physiother. 9, 1618 (2018)

    Article  ADS  Google Scholar 

  25. L Liu and F Liu, Appl. Math. Lett. 79, 92 (2018)

    Article  MathSciNet  Google Scholar 

  26. S J Liao, Appl. Math. Comput. 147, 499 (2004)

    MathSciNet  Google Scholar 

  27. J Sui, L Zheng, X Zhang and G Chen, Int. J. Heat Mass Transf. 85, 1023 (2015)

    Article  Google Scholar 

  28. M Irfan, M Khan, W A Khan and M Ayaz, Phys. Lett. A 382, 1992 (2018)

    Article  ADS  Google Scholar 

  29. S Gupta, D Kumar and J Singh, Int. J. Heat Mass Transf. 118, 378 (2018)

    Article  Google Scholar 

  30. M Rashid, M I Khan, T Hayat, M I Khan and A Alsaedi, J. Mol. Liq. 276, 441 (2019)

    Article  Google Scholar 

  31. M Khan, M Irfan and W A Khan, Pramana – J. Phys. (2018), https://doi.org/10.1007/s12043-018-1690-2

  32. M Khan, M Irfan, W A Khan and M Ayaz, Pramana – J. Phys. (2018), https://doi.org/10.1007/s12043-018-1579-0389

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madiha Rashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, M., Hayat, T., Rafique, K. et al. Chemically reactive flow of thixotropic nanofluid with thermal radiation. Pramana - J Phys 93, 97 (2019). https://doi.org/10.1007/s12043-019-1837-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1837-9

Keywords

PACS Nos

Navigation