Abstract
In this paper, we obtain approximate bound-state solutions of N-dimensional time-independent fractional Schrödinger equation for the generalised pseudoharmonic potential which has the form \(V(r^{\alpha })=a_1r^{2\alpha } + ({a_2}/{r^{2\alpha }})+a_3\). Here \(\alpha \;(0<\alpha <1)\) acts like a fractional parameter for the space variable r. The entire study consists of the Jumarie-type fractional derivative and the elegance of Laplace transform. As a result, we can successfully express the approximate bound-state solution in terms of Mittag–Leffler function and fractionally defined confluent hypergeometric function. Our study may be treated as a generalisation of all previous works carried out on this topic when \(\alpha =1\) and N arbitrary. We provide numerical result of energy eigenvalues and eigenfunctions for a typical diatomic molecule for different \(\alpha \) close to unity. Finally, we try to correlate our work with a Cornell potential model which corresponds to \(\alpha = {1}\) \(/\) \({2}\) with \(a_3=0\) and predicts the approximate mass spectra of quarkonia.
This is a preview of subscription content, access via your institution.








References
I Podlubny, Fractional differential equations, mathematics in science and engineering (Academic Press, San Diego, 1999)
I Podlubny, Fract. Calculus. Appl. Annal. 5, 367 (2002)
B B Mandelbrot, The fractal geometry of nature (Freeman, New York, 1982)
F Riewe, Phys. Rev. E 53, 1890 (1996)
S Muslih, D Baleanu and E Rabei, Phys. Scr. 73, 436 (2006)
N Laskin, Phys. Lett. A 298, 298 (2000)
N Laskin, Phys. Rev. E 66, 056108 (2002)
X Y Guo and M Y Xu, J. Math. Phys. 47, 082104 (2006)
J Dong and M Xu, J. Math. Anal. Appl. 344, 1005 (2008)
K S Miller and B Ross, An introduction to the fractional calculus and fractional differential equations (John Wiley and Sons, New York, 1993)
M Caputo, Geophys. J. R. Astr. Soc. 13, 529 (1967)
G Jumarie, Comput. Math. Appl. 51, 1367 (2006)
G Jumarie, Appl. Math. Lett. 18, 817 (2005)
U Ghosh, S Sengupta, S Sarkar and S Das, Eur. J. Acad. Essays 2, 70 (2015)
U Ghosh, S Sarkar and S Das, Adv. Pure Math. 5, 717 (2015)
R Kamocki and C Obczyński, J. Math. Phys. 55, 022902 (2014)
S R Raj and S S Jernith, Ann. Pure Appl. Math. 15, 209 (2017)
Y Khan and M Madani, Appl. Math. Lett. 25, 1340 (2012)
S H Dong, Wave equations in higher dimensions (Springer, Berlin, 2011)
T Das, U Ghosh, S Sarkar and S Das, J. Math. Phys. 59, 022111 (2018)
S H Dong and Z Q Ma, Int. J. Mod. Phys. E 11, 155 (2002)
L-Y Wang et al, Found. Phys. Lett. 15, 569 (2002)
S H Dong, Appl. Math. Lett. 16, 199 (2003)
N Sh Ussembayev, Int. J. Theor. Phys. 48, 607 (2009)
T Das and A Arda, Adv. High Energy Phys. 2015, Article ID 137038 (2015)
C Agon et al, Phys. Rev. D 98, 025019 (2018)
J Banerjee, U Ghosh, S Sarkar and S Das, Pramana – J. Phys. 88(4): 70 (2017)
G Jumarie, Acta Math. Sin. 28, 1741 (2012)
G Jumarie, Cent. Eur. J. Phys. 11, 617 (2013)
G Jumarie, Appl. Math. Lett. 22, 378 (2009)
S Das, Kindergarten of fractional calculus (to be published)
A A Kilbas, H M Srivastava and J J Trujillo, Theory and application of fractional differential equations (Elsevier, Amsterdam, 2006)
G M Mittag-Leffler, C. R. Acad. Sci. Puaris (Ser. II) 137, 554 (1903)
C Gang, Chin. J. Phys. 14, 1075 (2005)
E Eichten, K Gottfried, T Kinoshita, K D Lane and T M Yan, Phys. Rev. D 17, 3090 (1978)
N V Maksimenko and S M Kuchin, Russ. Phys. J. 54, 57 (2011)
M Abu-Shady, Int. J. Appl. Math. Theor. Phys. 2, 16 (2016)
J Beringer et al, Phys. Rev. D 86, (2012) 1
R M Barnett et al, Phys. Rev. D 54, (1996) 1
Acknowledgements
The authors would like to thank the anonymous reviewers for their careful reading, useful comments and constructive suggestions for the improvement of the manuscript of the present research work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Das, T., Ghosh, U., Sarkar, S. et al. Higher-dimensional fractional time-independent Schrödinger equation via fractional derivative with generalised pseudoharmonic potential. Pramana - J Phys 93, 76 (2019). https://doi.org/10.1007/s12043-019-1836-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12043-019-1836-x
Keywords
- Fractional radial Schrödinger equation
- generalised pseudoharmonic potential
- bound-state solutions
- Mittag–Leffler function