Skip to main content
Log in

Modelling and characterisation of the noise characteristics of the vertical cavity surface-emitting lasers subject to slow light feedback

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper introduces the modelling and characterisation of the noise properties of the vertical cavity surface-emitting laser (VCSEL) coupled in lateral direction with a passive cavity. This design of VCSEL with this transverse coupled cavity (TCC) is proposed for high-speed photonics. We introduce comprehensive simulations on the influence of the induced lateral slow light feedback on the relative intensity noise (RIN) and carrier-to-noise ratio (CNR). The proposed model incorporates multiple round trips of slow light in the TCC as time delay light in the rate equations of the VCSEL. The obtained results are compared with those of the conventional VCSEL. We show that the noise performance of the TCC-VCSEL is optimised when the VCSEL exhibits stable continuous wave (CW) operation under strong slow light feedback and the TCC length is smaller than 8 \(\mu \)m and between 11 and 13 \(\mu \)m. When strong slow light induces unstable regular and / or irregular oscillations, RIN is enhanced and CNR is lowered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K Iga, Jpn. J. Appl. Phys. 47, 1 (2008)

    Article  ADS  Google Scholar 

  2. F Koyama, J. Light. Technol. 24, 4502 (2006)

    Article  ADS  Google Scholar 

  3. K Kallimiani and M J O’Mahony, IEEE J. Quantum Electron. 34, 1438 (1998)

    Article  ADS  Google Scholar 

  4. M Ahmed and M Yamada, J. Appl. Phys. 95, 7573 (2004)

    Article  ADS  Google Scholar 

  5. N Schunk and K Petermann, IEEE J. Quantum Electron. QE-24, 1242 (1988)

    Article  ADS  Google Scholar 

  6. E Jayaprasath and S Sivaprakasam, Pramana – J. Phys. 89: 76 (2017)

    Article  ADS  Google Scholar 

  7. X Zhao, D Parekh, E K Lau, H K Sung, M C Wu, W Hofmann, M C Amann and C J Chang-Hasnain, Opt. Express 15, 14810 (2007)

    Article  ADS  Google Scholar 

  8. S H Lee, D Parekh, T Shindo, W Yang, P Guo, D Takahashi, N Nishiyama, C J Chang-Hasnain and S Arai, Opt. Express 18, 16370 (2010)

    Article  ADS  Google Scholar 

  9. J Harrison and A Mooradian, IEEE J. Quantum Electron. 25, 1152 (1989)

    Article  ADS  Google Scholar 

  10. J M Kahn, C A Burrus and G Raybon, IEEE Photon. Technol. Lett. 1, 159 (1989)

    Article  ADS  Google Scholar 

  11. G Wenke, R Gross, P Meissner and E Patzak, J. Light. Technol. 5, 608 (1987)

    Article  ADS  Google Scholar 

  12. G P Agrawal and C H Henry, IEEE J. Quantum Electron. 24, 134 (1988)

    Article  ADS  Google Scholar 

  13. H Dalir and F Koyama, Proceedings of the IEEE International Semiconductor Laser Conference (2000) p. 83

  14. H Dalir and F Koyama, IEICE Electron. Express 8, 1075 (2011)

    Article  Google Scholar 

  15. H Dalir and F Koyama, Appl. Phys. Lett. 103, 091109 (2013)

    Article  ADS  Google Scholar 

  16. H Dalir and F Koyama, Appl. Phys. Express 7, 022102 (2014)

    Article  ADS  Google Scholar 

  17. M Ahmed, A Bakry, M S Alghamdi, H Dalir and F Koyama, Opt. Express 23, 15365 (2015)

    Article  ADS  Google Scholar 

  18. R Lang and K Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980)

    Article  ADS  Google Scholar 

  19. S Abdulrhmann, M Ahmed, T Okamoto, W Ishimori and M Yamada, IEEE J. Quantum Electron. 9, 1265 (2003)

    Article  Google Scholar 

  20. M Ahmed, A Bakry, M S Alghamdi and F Koyama, Int. J. Numer. Model. 29, 475 (2016)

    Article  Google Scholar 

  21. M Ahmed, M Yamada and M Saito, IEEE J. Quantum Electron. 37, 1600 (2001)

    Article  ADS  Google Scholar 

  22. S Abdulrhmann, M Ahmed and M Yamada, SPIE 4986, 490 (2003)

    ADS  Google Scholar 

  23. L A Coldren, S W Corzine and M L Mashanovitch, Diode laser and photonic integrated circuits, 2nd edn (Wiley, New York, 2012) p. 260

    Book  Google Scholar 

  24. G E Box and M E Muller, Ann. Math. Statist. 29, 610611 (1958)

    Article  Google Scholar 

  25. A Mahmoud, M Ahmed and S W Z Mahmoud, PramanaJ. Phys. 90: 61 (2018)

    Article  ADS  Google Scholar 

  26. J Ohtsubo, Semiconductor lasers stability, instability and chaos, 3rd edn (Springer, New York, 2013) p. 136

    MATH  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. RG-9-130-38. The authors, therefore, acknowledge the technical and financial support of the DSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hameeda R Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, H.R., Alghamdi, M.S., Bakry, A. et al. Modelling and characterisation of the noise characteristics of the vertical cavity surface-emitting lasers subject to slow light feedback. Pramana - J Phys 93, 73 (2019). https://doi.org/10.1007/s12043-019-1831-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1831-2

Keywords

PACS Nos

Navigation