Skip to main content
Log in

N–N bond cleavage and ring expansion at the surface of exchange and substitutional antisite defective boron nitride nanotubes by boron cluster: A density functional theory study

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Functionalisation of nitrogen–nitrogen bonds of antisite defective boron nitride nanotubes (BNNTs), including exchange antisite defect which is produced by the rotation of BN bond, and substitutional antisite defect which is formed by substitution of an N with B, is investigated through their interaction with a \(\mathrm{B}^{-}_{6}\) cluster. The smaller defect formation energies for the substitutional antisite defects indicate that the substitution of an N atom with B atom is easier than rotation of a BN bond. The formation of antisite defects at the edge or near the edges is more favourable than that in the middle of the tubes. When complexation between double ring \(\mathrm{B}^{-}_{6}\) and nitrogen–nitrogen bonds of antisite defective BNNTs occurs, two-fold coordination, double ring configuration of boron cluster and N–N bond cleavage are seen. In the most stable complex, the \(\mathrm{B}^{-}_{6}\) pulls apart the B–N bond and becomes an integral part of the tube by expanding the hexagonal BN ring, while in the other BNNT-B6 clusters, double ring \(\mathrm{B}^{-}_{6}\) acts as a bridge at the top of the decagon. Functionalisation of N–N bonds at the edge or near the edges is more favourable than that in the middle of tubes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C W Chang, W Q Han and A Zettle, Appl. Phys. Lett. 86, 173102 (2005)

    Article  ADS  Google Scholar 

  2. X Blase, A Rubio, S Louie and M Cohen, Eur. Phys. Lett. 28, 335 (1994)

    Article  ADS  Google Scholar 

  3. D Golberg, Y Bando, M Eremets, K Takemura, K Kurashima, K Tamiya and H Yusa, Chem. Phys. Lett. 279, 191 (1997)

    Article  ADS  Google Scholar 

  4. W An, X Wu, J L Yang and X C Zeng, J. Phys. Chem. C 111, 14105 (2007)

    Article  Google Scholar 

  5. L Lai, W Song, J Lu, Z Gao, S Nagase, M Ni, W N Mei, J Liu, D Yu and H Ye, J. Phys. Chem. B 110, 14092 (2006)

    Article  Google Scholar 

  6. N Hamada, S L Sawada and A Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  ADS  Google Scholar 

  7. D Golberg, Y Bando, Y Huang, T Terao, M Mitome, C Tang and C Zhi, ACS Nano 4, 2979 (2010)

    Article  Google Scholar 

  8. M Terauchi, M Tanaka, M Takehisa and Y Saito, J. Electron. Microsc. 47, 319 (1998)

    Article  Google Scholar 

  9. X Blase, A Rubio, S G Louie and M L Cohen, Europhys. Lett. 28, 335 (1994)

    Article  ADS  Google Scholar 

  10. A Rubio, J L Corkill and M L Cohen, Phys. Rev. B 49, 5081 (1994)

    Article  ADS  Google Scholar 

  11. M Yaghobi and F A Larijani, Pramana – J. Phys. 84, 155 (2015)

    Article  ADS  Google Scholar 

  12. R J Baierle, T M Schmidt and A Fazzio, Solid State Commun. 142, 49 (2007)

    Article  ADS  Google Scholar 

  13. S S Varghese, S Swaminathan, S K Kumar and V Mittal, Comput. Condens. Matter 9, 40 (2016)

    Article  Google Scholar 

  14. K Xu, C Fu, Z Gao, F Wei, Y Ying, C Xu and G Fu, Instrum. Sci. Technol. 46, 115 (2018)

    Article  Google Scholar 

  15. W Yang, L Gan, H Li and T Zhai, Inorg. Chem. Front. 3, 433 (2016)

    Article  Google Scholar 

  16. T Oku, Energies 8, 319 (2015)

    Article  Google Scholar 

  17. Q Sun, Q Wang and P Jena, Nano Lett. 5, 1273 (2005)

    Article  ADS  Google Scholar 

  18. H Wang, N Ding, X Zhao and C-M L Wu, J. Phys. D Appl. Phys. 51, 125303 (2018)

    Article  ADS  Google Scholar 

  19. J Song, H Jiang, J Wu, Y Huang and K-C Hwang, Scr. Mater. 57, 571 (2007)

    Article  Google Scholar 

  20. G Kim, J Park and S Hong, Chem. Phys. Lett. 522, 79 (2012)

    Article  ADS  Google Scholar 

  21. X Shu-Wen, C Jian and Z Jun, Chin. Phys. Lett. 30, 103102 (2013)

    Article  ADS  Google Scholar 

  22. M G Mashapa, N Chetty and S S Ray, J. Nanosci. Nanotechnol. 12, 7021 (2012)

    Article  Google Scholar 

  23. M G Mashapa, N Chetty and S S Ray, J. Nanosci. Nanotechnol. 12, 7796 (2012)

    Article  Google Scholar 

  24. H S Kang, J. Phys. Chem. B 110, 4621 (2006)

    Article  Google Scholar 

  25. A Zobelli, C P Ewels, A Gloter, G Seifert, O Stephan, S Csillag and C Colliex, Nano Lett. 6, 1955 (2006)

    Article  ADS  Google Scholar 

  26. J-X Zhao and Y-H Ding, J. Chem. Phys. 131, 014706 (2009)

    Article  ADS  Google Scholar 

  27. R Sundaram, S Scheiner, A K Roy and T Kar, Phys. Chem. Chem. Phys. 17, 3850 (2015)

    Article  Google Scholar 

  28. Y Lin, T V Williams and J W Connell, J. Phys. Chem. Lett. 1, 277 (2010)

    Article  Google Scholar 

  29. A Nag, K Raindogia, K P S S Hembram, R Datta, U V Waghmare and C N R Rao, ACS Nano 4, 1539 (2010)

    Article  Google Scholar 

  30. S-Y Xie, W Wang, K A S Fernando, X Wang, Y Lin and Y-P Sun, Chem. Commun. 29, 3670 (2005)

  31. D Golberg, Y Bando, C C Tang and C Y Zhi, Adv. Mater. 19, 2413 (2007)

    Article  Google Scholar 

  32. S Pal, S R C Vivekchand, A Govindaraj and C N R Rao, J. Mater. Chem. 17, 450 (2007)

    Article  Google Scholar 

  33. X Wu, W An and X C Zeng, J. Am. Chem. Soc. 128, 12001 (2006)

    Article  Google Scholar 

  34. T Ikuno, T Sainsbury, D Okawa, J M J Frechet and A Zettl, Solid State Commun. 142, 643 (2007)

    Article  ADS  Google Scholar 

  35. A Maguer, E Leroy, L Bresson, E Doris, A Loiseau and C Mioskowski, J. Mater. Chem. 19, 1271 (2009)

    Article  Google Scholar 

  36. J Cano Ordaz, C Anota, M S Villanueva and M Castroc, New. J. Chem. 41, 8045 (2017)

    Article  Google Scholar 

  37. E C Anota, M S Villanueva, E Shakerzadeh and M Castro, Appl. Nanosci. 8, 455 (2018)

    Article  ADS  Google Scholar 

  38. E Chigo Anota, M Salazar Villanueva, A Bautista Hernández, W Ibarra Hernández and M Castro, Appl. Phys. A 124, 590 (2018)

    Article  ADS  Google Scholar 

  39. S Mukherjee and P Thilagar, Chem. Commun. 52, 1070 (2016)

    Article  Google Scholar 

  40. N S Hosmane, Boron science: New technologies and applications (CRC Press, Francis & Taylor Group, Boca Raton, Florida, 2012)

    Google Scholar 

  41. Z J Leśnikowski, J. Med. Chem. 59, 7738 (2016)

    Article  Google Scholar 

  42. R N Grimes, J. Chem. Educ. 81, 657 (2004)

    Article  Google Scholar 

  43. J Aihara, J. Am. Chem. Soc. 100, 3339 (1978)

    Article  Google Scholar 

  44. E C Anota, M S Villanueva, S Valdez and M Castro, Struct. Chem. 28, 1757 (2017), https://doi.org/10.1007/s11224-017-0953-8

    Article  Google Scholar 

  45. E Chigo-Anota, G Cárdenas-Jirón, M Salazar Villanueva, A Bautista Hernández and M Castro, Physica E 94, 196 (2017)

    Article  ADS  Google Scholar 

  46. Y Zhao and D G Truhlar, Theor. Chem. Acc. 120, 215 (2008)

    Article  Google Scholar 

  47. P C Hariharan and J A Pople, Mol. Phys. 27, 209 (1974)

    Article  ADS  Google Scholar 

  48. Y Zhang, A Wu, X Xu and Y Yan, J. Phys. Chem. A 111, 9431 (2007)

    Article  Google Scholar 

  49. R Ghafouri and F Ektefa, Struct. Chem. 26, 507 (2015)

    Article  Google Scholar 

  50. M Anafcheh and R Ghafouri, Physica E 56, 351 (2014)

    Article  ADS  Google Scholar 

  51. M W Schmidt, K K Baldridge, J A Boatz, S T Elbert, M S Gordon, J H Jensen, S Koseki, N Matsunaga, K A Nguyen, S J Su, T L Windus, M Dupuis and J A Montgomery, J. Comput. Chem. 14, 1347 (1993)

    Article  Google Scholar 

  52. M S Gordon and M W Schmidt, Theory and applications of computational chemistry: The first forty years edited by C E Dykstra, G Frenking, K S Kim and G E Scuseria (Elsevier, Amsterdam, 2005)

  53. S-P Ju, Y-C Wang and T-W Lien, Nanoscale Res. Lett. 6, 160 (2011)

    Article  ADS  Google Scholar 

  54. Y Li, Z Zhou, D Golberg, Y Bando, P V R Schleyer and Z Chen, J. Phys. Chem. C 112, 1365 (2008)

    Article  Google Scholar 

  55. S Sinthika, E M Kumar, V J Surya, Y Kawazoe, N Park, K Iyakutti and R Thapa, Sci. Rep. 5, 17460 (2015)

    Article  ADS  Google Scholar 

  56. R Saito, G Dressehaus and M S Dresselhaus, Physics properties of carbon nanotubes (World Scientific, New York, 1998)

    Book  Google Scholar 

  57. R G Parr, L V Szentpály and S Liu, J. Am. Chem. Soc. 121, 1922 (1999)

    Article  Google Scholar 

  58. M Anafcheh, R Ghafouri and N L Hadipour, Sol. Energy Mater. Sol. Cells 105, 125 (2012)

    Article  Google Scholar 

  59. M Anafcheh and R Ghafouri, J. Cluster Sci. 25, 505 (2014)

    Article  Google Scholar 

  60. R G Parr, R A Donnelly, M Levy and W E Palke, J. Chem. Phys. 68, 3801 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Anafcheh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anafcheh, M., Shahbaz, N. & Zahedi, M. N–N bond cleavage and ring expansion at the surface of exchange and substitutional antisite defective boron nitride nanotubes by boron cluster: A density functional theory study. Pramana - J Phys 93, 64 (2019). https://doi.org/10.1007/s12043-019-1825-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1825-0

Keywords

PACS No

Navigation