Skip to main content

Advertisement

Log in

Transportation of activation energy in the Oldroyd-B nanofluid by considering double stratification over a surface with variable thickness

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this communication, the impact of activation energy on the nonlinear binary chemically reactive flow of an Oldroyd-B nanofluid has been examined. Buongiorno’s nanofluid model is used in mathematical modelling. The flow behaviour is discussed over a nonlinear stretchable surface with variable thickness. Nonlinear mixed convection is considered. The energy equation is modelled subject to a heat source / sink and radiative flux. Furthermore, double stratification at the boundary of the sheet is considered for the heat and mass transfers. Important slip mechanisms such as Brownian and thermophoresis diffusions are accounted. The obtained flow expressions are analytically solved by using the optimal homotopy asymptotic method (OHAM). Computational analysis for concentration, temperature and velocity is obtained and discussed using plots. Nusselt and Sherwood numbers are discussed using a tabulated form. Total squared residual error is calculated for velocity, temperature and concentration. The obtained results show that for increased values of Hartmann (magnetic parameter) and Deborah numbers, the fluid velocity decreases. The temperature field shows an increasing impact in the presence of larger radiative parameters. Sherwood and Nusselt numbers increase with higher values of thermophoresis and solutal stratified parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S Lee, S U Choi, S Li and J A Eastman, J. Heat Transfer 121, 280 (1999)

    Article  Google Scholar 

  2. Y Xuan and Q Li, J. Heat Transfer 125, 151 (2003)

    Article  Google Scholar 

  3. L Zhang, J Z Lv, M L Bai and D Guo, Heat Transfer Eng. 36, 452 (2014)

    Article  ADS  Google Scholar 

  4. W Cui, M Bai, J Lv, G Li and X Li, Ind. Eng. Chem. Res. 50, 13568 (2011)

    Article  Google Scholar 

  5. L Zhang, J Z Lv, M L Bai, Y N Bian, H Liu and S Q Shen, J. Therm. Sci. Technol. 1, 1 (2014)

    Google Scholar 

  6. R P Laein, S Rashidi and J A Esfahani, Adv. Powder. Technol. 27, 312 (2016)

    Article  Google Scholar 

  7. T Hayat, K Muhammad, M I Khan and A Alsaedi, Pramana – J. Phys. 92: 57 (2019)

    Article  ADS  Google Scholar 

  8. M I Khan, S Qayyum, T Hayat, M I Khan and A Alsaedi, Int. J. Heat Mass Transf. 133, 959 (2019)

    Article  Google Scholar 

  9. W A Khan, A S Alshomrani, A K Alzahrani, M Khan and M Irfan, Pramana – J. Phys. 91: 63 (2018)

    Article  ADS  Google Scholar 

  10. M I Khan, A Kumar, T Hayat, M Waqas and R Singh, J. Mol. Liq. 278, 677 (2019)

    Article  Google Scholar 

  11. M I Khan, T Hayat, F Shah, M U Rahman and F Haq, Int. J. Heat Mass Transf. 135, 561 (2019)

    Article  Google Scholar 

  12. M Kumar, G J Reddy and N Dalir, Pramana – J. Phys. 91: 60 (2018)

    Article  ADS  Google Scholar 

  13. T Hayat, M Rashid, M I Khan and A Alsaedi, Iran. J. Sci. Technol. Trans. A: Sci. (2019), in press.

  14. M Khan, M Irfan and W A Khan, Pramana – J. Phys. 92: 17 (2019)

    Article  ADS  Google Scholar 

  15. T Hayat, F Shah, M I Khan and A Alsaedi, Results Phys. 8, 206 (2018)

    Article  ADS  Google Scholar 

  16. M I Khan, S Ullah, T Hayat, M Waqas, M I Khan and A Alsaedi, Int. J. Heat Mass Transf. 126, 1337 (2018)

    Article  Google Scholar 

  17. T Hayat, M Waqas, S A Shehzad and A Alsaedi, Pramana – J. Phys. 86, 3 (2016)

    Article  ADS  Google Scholar 

  18. M I Khan, T A Khan, S Qayyum, T Hayat, M I Khan and A Alsaedi, Eur. Phys. J. Plus 133, 329 (2018)

    Article  Google Scholar 

  19. M I Khan, S Qayyum, T Hayat and A Alsaedi, Chin. J. Phys. 56, 1525 (2018)

    Article  Google Scholar 

  20. T Hayat, M Z Kayani, A Alsaedi, M I Khan and I Ahmad, Int. J. Heat Mass Transf. 127, 422 (2018)

    Article  Google Scholar 

  21. Z Odibat, Appl. Numer. Math. 137, 203 (2019)

    Article  MathSciNet  Google Scholar 

  22. T Hayat, M I Khan, M Farooq, A Alsaedi, M Waqas and T Yasmeen, Int. J. Heat Mass Transf. 99, 702 (2016)

    Article  Google Scholar 

  23. M I Khan, M Waqas, T Hayat and A Alsaedi, J. Colloid Interface Sci. 498, 85 (2017)

    Article  ADS  Google Scholar 

  24. T Hayat, M I Khan, S Qayyum and A Alsaedi, Colloids Surf. A 539, 335 (2018)

    Article  Google Scholar 

  25. H Y Martínez and J F G Aguilar, J. Comput. Appl. Math. 346, 247 (2019)

    Article  MathSciNet  Google Scholar 

  26. M Azam, A Shakoor, H F Rasool and M Khan, Int. J. Heat Mass Transf. 131, 495 (2019)

    Article  Google Scholar 

  27. M I Khan, T Hayat, M I Khan and A Alsaedi, Int. Commun. Heat Mass Transf. 91, 216 (2018)

    Article  Google Scholar 

  28. S R Sheri and T Thumma, Ain Shams Eng. J. 9, 1169 (2018)

    Article  Google Scholar 

  29. M I Khan, T Yasmeen, M I Khan, M Farooq and M Wakeel, Renew. Sust. Energy Rev. 66, 702 (2016)

    Article  Google Scholar 

  30. T Ambreen, A Saleem and C W Park, Powder Technol. 345, 509 (2019)

    Article  Google Scholar 

  31. N B Khan, Z Ibrahim, M I Khan, T Hayat and M F Javed, Int. J. Heat Mass Transf. 121, 309 (2018)

    Article  Google Scholar 

  32. M Irfan, W A Khan, M Khan and M M Gulzar, J. Phys. Chem. Solids 125, 141 (2019)

    Article  ADS  Google Scholar 

  33. M W A Khan, M I Khan, T Hayat and A Alsaedi, Physica B 534, 113 (2018)

    Article  ADS  Google Scholar 

  34. T Hayat, M Tamoor, M I Khan and A Alsaedi, Results Phys. 6, 1031 (2016)

    Article  ADS  Google Scholar 

  35. M N Rostami, S Dinarvand and I Pop, Chin. J. Phys. 56, 2465 (2018)

    Article  ADS  Google Scholar 

  36. H Mirgolbabaee, S T Ledari, N M Zadeh and D D Ganji, J. Taibah Univ. Sci. 11, 1110 (2017)

    Article  Google Scholar 

  37. H Mirgolbabaee, S T Ledari and D D Ganji, Alexandria Eng. J. 55, 1695 (2016)

    Article  Google Scholar 

  38. S S Ghadikolaei, K Hosseinzadeh and D D Ganji, Case Stud. Thermal Eng. 10, 579 (2017)

    Article  Google Scholar 

  39. H Mirgolbabaee, S T Ledari, M Sheikholeslami and D D Ganji, Int. J. Appl. Comput. Math. 3, S1463 (2017)

    Article  Google Scholar 

  40. H Mirgolbabaee, S T Ledari and D D Ganji, J. Assoc. Arab Univ. Basic Appl. Sci. 24, 213 (2017)

    Google Scholar 

  41. M Danish, S Kumar and S Kumar, Comput. Chem. Eng. 36, 57 (2012)

    Article  Google Scholar 

  42. T Hayat, T Nasir, M I Khan and A Alsaedi, Results Phys. 9, 390 (2018)

    Article  ADS  Google Scholar 

  43. S Gupta, D Kumar and J Singh, Int. J. Heat Mass Transf. 118, 378 (2018)

    Article  Google Scholar 

  44. A Alsaedi, M I Khan and T Hayat, J. Theor. Comput. Chem. 16, 1750064 (2017)

    Article  Google Scholar 

  45. S J Liao, Commun. Nonlinear Sci. Numer. Simul. 15, 2003 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Ijaz Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijaz Khan, M., Qayyum, S., Farooq, S. et al. Transportation of activation energy in the Oldroyd-B nanofluid by considering double stratification over a surface with variable thickness. Pramana - J Phys 93, 62 (2019). https://doi.org/10.1007/s12043-019-1815-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1815-2

Keywords

PACS Nos

Navigation