Advertisement

Pramana

, 93:49 | Cite as

The synchronisation of two floating memristor-based oscillators and the circuit design

  • Hongmin DengEmail author
  • Qionghua Wang
Article
  • 37 Downloads

Abstract

The synchronisation between two floating memristor-based Colpitts oscillators is studied in this paper. Firstly, the mathematical and circuit models of Colpitts oscillator based on a floating memristor with a diode bridge structure are built. On this basis, numerical simulations on the features of both the independent memristor and the floating memristor are conducted and compared using MATLAB software. Secondly, circuit simulation is made on the synchronisation of two floating memristor-based systems by using MULTISIM software. Finally, the physical circuit on the synchronisation of the two coupling Colpitts systems based on the diode bridge memristors is implemented by using the linear error feedback scheme and improved by the capacitor coupling scheme and the adaptive nonlinear feedback control scheme, respectively. The experimental results by the oscilloscope and simulation results show that approximate synchronisation is achieved.

Keywords

Floating memristor synchronisation Colpitts oscillator physical implementation 

PACS Nos

05.45.Xt 07.50.Ek 05.45.–a 

Notes

Acknowledgement

The work was financially supported by a grant from the National Natural Science Foundation of China under Grant No. 61174025.

References

  1. 1.
    L M Pecorra and T L Carrol, Phys. Rev. Lett. 64, 821 (1990)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    C Zheng and J D Cao, Neurocomputing 141, 153 (2014)CrossRefGoogle Scholar
  3. 3.
    B Chen, J R Engelbrecht and R Mirollo, Phys. Rev. E 95, 022207 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    J L Mata-Machuca and R Martinez-Guerra, Comput. Math. Appl. 63, 1072 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    S Pourdehi, D Karimipour and P Karimaghaee, Chaos 21, 043128 (2011),  https://doi.org/10.1063/1.3660326 ADSCrossRefGoogle Scholar
  6. 6.
    A Khan, D Khattar and N Prajapati, Pramana – J. Phys. 88: 47 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    L Min and L Jing, Chaos Solitons Fractals 24, 1363 (2004)Google Scholar
  8. 8.
    S P Wen, Z G Zeng and T W Huang, Phys. Lett. A 376, 2775 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    R Martínez-Guerra and W Yu, Int. J. Bifurc. Chaos 18, 235 (2008)CrossRefGoogle Scholar
  10. 10.
    E Padmanaban, C Hens and S K Data, Chaos 21, 013110 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A L Wu, S P Wen and Z G Zeng, Inform. Sci. 183, 106 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    W Zhang, C D Li, T W Huang and J J Huang, Neurocomputing 173, 1066 (2016)CrossRefGoogle Scholar
  13. 13.
    S Cicek, A Ferikoglu and I Pehlivan, Optik 127, 4024 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    H Kim, M P Sah, C Yang, T Roska and L O Chua, Proc. IEEE 100, 2061 (2012)CrossRefGoogle Scholar
  15. 15.
    A Chandrasekar, R Rakkiyappan, J D Cao and S Lakshmanan, Neural Netw. 57, 79 (2014)CrossRefGoogle Scholar
  16. 16.
    J W Sun, Y Shen, Q Yin and C J Xu, Chaos 23, 013140 (2013)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    D B Strukov, G S Snider, D R Steward and R S Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    H B Bao, J H Park and J D Cao, Nonlinear Dyn. 82, 1343 (2015)CrossRefGoogle Scholar
  19. 19.
    N Li and J D Cao, Neural Netw. 61, 1 (2015)CrossRefGoogle Scholar
  20. 20.
    A Nourian and S Balochian, Pramana – J. Phys. 86, 1401 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Z Y Yang, B Luo and D R Liu, Neural Netw. 93, 143 (2017)CrossRefGoogle Scholar
  22. 22.
    A Chandrasekar and R Rakkiyappan, Neurocomputing 173, 1348 (2016)CrossRefGoogle Scholar
  23. 23.
    G D Zhang and Y Shen, Neural Netw. 55, 1 (2014)CrossRefGoogle Scholar
  24. 24.
    J H Zhang and X F Liao, Int. J. Electron. Commun. (AEÜ) 75, 82 (2017)CrossRefGoogle Scholar
  25. 25.
    A Karthikeyan and K Rajagopal, Pramana – J. Phys. 90: 14 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    L V Gambuzza, A Buscarino, L Fortuna and M Frasca, IEEE Trans. Circuits Syst.-I: Regul. Pap. 62, 1175 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    B Muthuswamy, Int. J. Bifurc. Chaos 20, 1335 (2010)CrossRefGoogle Scholar
  28. 28.
    C Sanchez-Lopez, J Mendoza-Lopez, M A Carrasco-Aguilar and C Muniz-Montero, IEEE Trans. Circuits Syst.-II: Express Briefs 61, 309 (2014)CrossRefGoogle Scholar
  29. 29.
    X Y Wang, L F Andrew, H C I Herbert, S Victor and W G Qi, Chin. Phys. B 21, 108501 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    J Kengne, Z N Tabekoueng, V K Tamba and A N Negou, Chaos 25, 103126 (2015),  https://doi.org/10.1063/1.4934653 ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    L Lu, C D Li, Z C Zhao, B C Bao and Q Xu, Math. Probl. Eng. 2015, Article ID 249102 (2015),  https://doi.org/10.1155/2015/249102 (2015)MathSciNetzbMATHGoogle Scholar
  32. 32.
    H M Deng and D P Wang, AIP Adv. 7, 035118 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.College of Electronics and Information EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations