Skip to main content
Log in

The synthesis and study of structural, optical and electrical behaviours of tin oxide / polyaniline (\(\hbox {SnO}_{2}/\hbox {PANI}\)) nanocomposites

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A series of tin oxide \((\hbox {SnO}_{2})/\hbox {polyaniline}\) (PANI) nanocomposites with loading of different wt% of PANI were synthesised using a solution-based processing method for improving the structural and physical properties of tin oxide. The effect of PANI loading on the gross structure, surface morphology, optical properties and electrical properties of \(\hbox {SnO}_{2}/\hbox {PANI}\) nanocomposites was investigated. The scanning electron micrographs (SEM) show congruent dispersal of PANI in the tin oxide matrix where the gross / average structure is unchanged as revealed by powder X-ray diffraction (PXRD). A slight change in the lattice parameter of the pristine rutile crystalline structure \(\hbox {SnO}_{2}\) and its nanocomposites has been recorded. However, the crystallite size has been found to decrease from 60 to 40 nm with different wt% loading of PANI. The presence of characteristic Fourier transform infrared (FT-IR) peaks dovetail to C–H, \(\hbox {C}{=}\hbox {C}\), \(\hbox {NH}_{2}\), C–C and the energy-dispersive analysis of X-rays (EDAX) confirm the development of the PANI nanocomposite. Photoluminescence (PL) spectroscopic study shows the gradual decrement in the intensity of the emission peak at 611 nm due to the disappearance of surface defects associated with oxygen vacancies. The uniform dispersion of PANI at the nanoscale significantly enhanced the electrical properties, e.g. four orders of magnitude changes in electrical conductivity and carrier mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V Natalia Blinova and J Stejskal, Polym. Int. 57, 66 (2008)

    Article  Google Scholar 

  2. S Sedaghat and M S Alavijeh, Int. Nano Lett. 4, 115 (2014)

    Article  Google Scholar 

  3. V H Nguyen, L Tang and J J Shim, Colliod Polym. Sci. 291, 2237 (2013)

    Article  Google Scholar 

  4. B G Soares, F G Souza Jr, A Manjunath, H Somashekarappa, R Somashekar and Siddaramaiah, Pramana – J. Phys. 69, 435 (2007)

    Article  ADS  Google Scholar 

  5. T Puzyn, D Leszczynska and J Leszczynski, Adv. Chalk. Small 5, 2494 (2009)

    Article  Google Scholar 

  6. J Leszczynski, Nat. Nanotechnol. 5, 633 (2010)

    Article  ADS  Google Scholar 

  7. S Sarmah and A Kumar, Bull. Mater. Sci. 36, 31 (2013)

    Article  Google Scholar 

  8. S Vohra, M Kumar, M L Singla and S K Mittal, J. Mater. Sci. 24, 1354 (2013)

    Google Scholar 

  9. O Kamigaito, J. Jpn. Soc. Powder Metal. 38, 315 (1991)

    Article  Google Scholar 

  10. M Fernandez Garcia, A Martínez-Arias, J C Hanson and J A Rodríguez, Chem. Rev. 104, 4063 (2004)

    Article  Google Scholar 

  11. C Kilic and A Zunger, Phys. Rev. Lett. 88, 095501 (2002)

    Article  ADS  Google Scholar 

  12. A Alam, A Ansari, M Rafi Shaik and M Alandis, Arabian J. Chem. 6, 341 (2013)

    Article  Google Scholar 

  13. S C Raghvendra, S Khasim, M Revanasiddappa, M V N A Prasad and A B Kulkarni, Bull. Mater. Sci. 26, 733 (2003)

    Article  Google Scholar 

  14. L N Korosi, S Pupp, V Meynen, P Cool, E F Vansont and I Dekany, Colloids Surf. B 268, 147 (2005)

    Article  Google Scholar 

  15. H Zhang, N Du Chen, T Cui and D Yang, Mater. Res. Bull. 43, 3164 (2008)

    Article  Google Scholar 

  16. C J Brabee, N S Sariciftei and J C Hummelen, Adv. Funct. Mater. 11, 15 (2001)

    Article  Google Scholar 

  17. H Bai and G Shi, Sensors 7, 267 (2007)

    Article  Google Scholar 

  18. S Virji, J Huang, R B Kanver and B H Weiller, Nano Lett. 4, 491 (2004)

    Article  ADS  Google Scholar 

  19. G Yu, J Gao, J G Hummelen, F Wudl and A J Heeger, Science 270, 1789 (1995)

    Article  ADS  Google Scholar 

  20. N G Desphande, Y G Gudege, R Sharma, J C Vyas, J B Kim and Y P Lee, Sens. Actuators B 138, 76 (2009)

    Article  Google Scholar 

  21. B K Sharma, A K Gupta, N Khare, S K Dhawan and H C Gupta, Synth. Metal 159, 391 (2009)

    Article  Google Scholar 

  22. K Dutta and S K De, Mater. Lett. 61, 4967 (2007)

    Article  Google Scholar 

  23. M A Khan, M K Uddin, R Bushra, A Ahmad and S A Nabi, React. Kinet. Mech. Cat. 113, 499 (2014)

    Article  Google Scholar 

  24. C Mayyoso, S K Manohar, A C Macdiarmid and A J Epstein, J. Polym. Sci. 33(A), 1227 (1995)

    Google Scholar 

  25. R Murugesan and E Subramanian, Bull. Mater. Sci. 25, 613 (2002)

    Article  Google Scholar 

  26. V G Bairi, B A Warford, S E Bourdo, A S Biris and T J Viswanathan, J. Appl. Polym. Sci. 124, 3320 (2012)

    Article  Google Scholar 

  27. N V Hieu, N Q Dung, P D Tam, T Trung and N D Chien, Sens. Actuators B-Chem. 140, 500 (2009)

    Article  Google Scholar 

  28. M Trchova, J Zemek and J Stejskal, Macromolecules 31, 2218 (1998)

    Article  ADS  Google Scholar 

  29. J Stejskal and R G Gilbert, Pure Appl. Chem. 74, 857 (2002)

    Article  Google Scholar 

  30. S K Patel, R B Patel, A Awadhia, N Chand and S L Agrawal, Pramana – J. Phys. 69, 467 (2007)

    Article  ADS  Google Scholar 

  31. H L Wu and Philip Phillips, Phys. Rev. Lett. 66, 1366 (1991)

  32. N F Mott, Can. J. Phys. 34, 1356 (1956)

    Article  ADS  Google Scholar 

  33. N F Mott, Philos. Mag. 6, 1013 (1961)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Poonam Tandon, Department of Physics, University of Lucknow, Uttar Pradesh for her assistance in recording the FT-IR spectra and Dr K Ashokan and Dr M Saif, Inter-University Accelerator Centre, New Delhi for providing the facilities of the IV curve / Hall measurement and the scanning electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Das, B. The synthesis and study of structural, optical and electrical behaviours of tin oxide / polyaniline (\(\hbox {SnO}_{2}/\hbox {PANI}\)) nanocomposites. Pramana - J Phys 93, 32 (2019). https://doi.org/10.1007/s12043-019-1794-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1794-3

Keywords

PACS Nos

Navigation