Skip to main content
Log in

Performance of resistance in the variation on a nano thin film flow influenced by thermal deposition: The Buongiorno model

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the current study, the flow of Casson liquid thin film, together with heat transfer towards a stretching surface extracting out from a narrow slit in the presence of a magnetic field, viscous dissipation and thermal radiation effects, is examined. The contribution of nanoparticles is investigated by employing the Buongiorno model. Mathematical modelling is carried out in the Cartesian coordinate system and similarity analysis is opted for simplification. The numerical analysis is performed in the reduced system using the shooting method. The effects of the prominent parameters are discussed using line and bar graphs. The key finding is that the temperature drop is prominent in the case of Casson nanofluid compared to the nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. L J Crane, J. Appl. Math. Phys. 21, 645 (1970)

    Google Scholar 

  2. S Iram, M Nawaz and A Ali, Pramana – J. Phys. 91: 47 (2018)

  3. H I Andersson, J B Aareth, N Braud and B S Dandapat, J. Non-Newton. Fluid Mech. 62, 1 (1996)

    Article  Google Scholar 

  4. H I Andersson, J B Aarseth and B S Dandapat, Int. J. Heat Mass Transf. 43, 69 (2000)

    Article  Google Scholar 

  5. B S Dandapat, B Santra and H I Andersson, Int. J. Heat Mass Transf. 46, 3009 (2003)

    Article  Google Scholar 

  6. C H Chen, Heat Mass Transf. 39, 791 (2003)

    Article  ADS  Google Scholar 

  7. C Wang, Heat Mass Transf. 42, 759 (2006)

    Article  ADS  Google Scholar 

  8. I C Liu and H I Andersson, Int. J. Therm. Sci. 47, 766 (2008)

    Article  Google Scholar 

  9. M S Abel, N Mahesha and J Tawade, Appl. Math. Model. 33, 3430 (2009)

    Article  MathSciNet  Google Scholar 

  10. M S Abel, J Tawade and M M Nandeppanavar, Int. J. Non-Linear Mech. 44, 990 (2009)

    Article  ADS  Google Scholar 

  11. H Xu, I Pop and X C You, Int. J. Heat Mass Transf. 60, 646 (2013)

    Article  Google Scholar 

  12. B S Dandapat, A Kitamura and B Santra, Z. Angew Math. Phys. 57, 623 (2006)

    Article  MathSciNet  Google Scholar 

  13. B S Dandapat, S Maity and A Kitamura, Int. J. Non-Linear Mech. 43, 880 (2008)

    Article  ADS  Google Scholar 

  14. S Maity, Int. J. Heat Mass Transf. 70, 819 (2014)

    Article  Google Scholar 

  15. M A El-Aziz and A A Afify, Braz. J. Phys. 46, 516 (2016)

    Article  ADS  Google Scholar 

  16. Z Iqbal, E Azhar and E N Maraj, Chaos Solitons Fractals 114, 312 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Z Iqbal, E Azhar, E N Maraj and Z Mehmood, Commun. Theor. Phys. 70, 239 (2018)

    Article  ADS  Google Scholar 

  18. E N Maraj, S Shaiq and Z Iqbal, J. Mol. Liq. 262, 275 (2018)

    Article  Google Scholar 

  19. E N Maraj, Z Iqbal and S Shaiq, Int. J. Hydro. Energy, 43, 10915 (2018)

    Article  Google Scholar 

  20. K U Rehman, N U Saba, M Y Malik and I Zehra, Eur. Phys. J. E 41, 37 (2018)

    Article  Google Scholar 

  21. N A Casson and C C Mill (eds) Rheology of disperse systems (Pergamon Press, New York, 1959) p. 84

    Google Scholar 

  22. M A El-Aziz, Meccanica 45, 97 (2010)

    Article  MathSciNet  Google Scholar 

  23. B S Dandapat, B Santra and K Vajravelu, Int. J. Heat Mass Transf. 50, 991 (2007)

    Article  Google Scholar 

  24. J Buongiorno, ASME J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  25. M Q Brewster, Thermal radiative transfer properties (Wiley, London, 1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E N Maraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maraj, E.N., Iqbal, Z. & Bibi, J. Performance of resistance in the variation on a nano thin film flow influenced by thermal deposition: The Buongiorno model. Pramana - J Phys 93, 31 (2019). https://doi.org/10.1007/s12043-019-1792-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1792-5

Keywords

PACS Nos

Navigation