Skip to main content
Log in

Modulational instability and dynamics of rational soliton solutions for the coupled Volterra lattice equation associated with \(4\times 4\) Lax pair

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The coupled Volterra lattice equation associated with \(4\times 4\) Lax pair is under investigation, which is an integrable discrete form of a coupled KdV equation applied widely in fluids, Bose–Einstein condensation and atmospheric dynamics. First, we explore the conditions for modulational instability (MI) of the constant seed background for this equation. Secondly, we present the discrete Darboux transformation (DT) and generalised DT based on the new \(4\times 4\) Lax pair. Through the resulting discrete DT, the bell-shaped and anti-N-shaped soliton solutions of the coupled Volterra lattice equation are derived. Moreover, we derive the M-shaped and N-shaped rational solitons and bell-shaped and N-shaped semirational soliton solutions of the coupled Volterra lattice equation via the discrete generalised DT. Finally, we numerically study the dynamical behaviours of such soliton solutions and find that the rational and semirational soliton solutions have better numerical stability than the usual soliton solution, although three types of solutions are robust against a small noise. The results may be helpful for understanding the two-layered fluid waves near ocean shores described by the coupled Korteweg–de Vries (KdV) equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A M Wazwaz, Pramana – J. Phys. 87: 68 (2016)

    Article  ADS  Google Scholar 

  2. Y K Liu and B Li, Pramana – J. Phys. 88: 57 (2017)

    Article  ADS  Google Scholar 

  3. Z Du, B Tian, X Y Xie, J Chai and X Y Wu, Pramana – J. Phys. 90: 45 (2018)

    Article  ADS  Google Scholar 

  4. D W Zuo and H X Jia, Optik 127, 11282 (2016)

    Article  ADS  Google Scholar 

  5. D W Zuo, Appl. Math. Lett. 79, 182 (2018)

    Article  MathSciNet  Google Scholar 

  6. X Y Wen and Y Chen, Pramana – J. Phys. 91: 23 (2018)

    Article  ADS  Google Scholar 

  7. X Y Wen, Z Y Yan and Y Q Yang, Chaos 26, 063123 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. X Y Wen and Z Y Yan, Commun. Nonlinear Sci. Numer. Simul. 43, 311 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. X Y Wen, Y Q Yang and Z Y Yan, Phys. Rev. E 92, 012917 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. X Y Wen and Z Y Yan, Chaos 25, 123115 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. X Y Wen and G Q Zhang, Mod. Phys. Lett. B 32, 1850005 (2018)

    Article  ADS  Google Scholar 

  12. G Z Tu, J. Phys. A 23, 3903 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  13. M Toda, Theory of nonlinear lattices (Springer, Berlin, 1989)

    Book  Google Scholar 

  14. M Wadati, Prog. Theor. Phys. Suppl. 59, 36 (1977)

    Article  ADS  Google Scholar 

  15. D J Kaup, Math. Comput. Simul. 69, 322 (2005)

    Article  Google Scholar 

  16. R Hirota, J. Phys. Soc. Jpn 35, 289 (1973)

    Article  ADS  Google Scholar 

  17. M J Ablowitz and P A Clarkson, Solitons, nonlinear evolution equations and inverse scattering (Cambridge University Press, New York, 1991)

    Book  Google Scholar 

  18. M J Ablowitz and H Segur, Solitons and the inverse scattering transform (SIAM, Philadelphia, 1981)

    Book  Google Scholar 

  19. M J Ablowitz and F J Ladik, Stud. Appl. Math. 55, 213 (1976)

    Article  Google Scholar 

  20. R Hirota and J Satsuma, Prog. Theor. Phys. Suppl. 59, 64 (1976)

    Article  ADS  Google Scholar 

  21. X G Geng, H H Dai and C W Cao, J. Math. Phys. 44, 4573 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. V B Matveev and M A Salle, Darboux transformations and solitons (Springer-Verlag, Berlin, 1991)

    Book  Google Scholar 

  23. N Liu and X Y Wen, Mod. Phys. Lett. B 32, 1850085 (2018)

    Article  ADS  Google Scholar 

  24. L Liu, D S Wang, K Han and X Y Wen, Commun. Nonlinear Sci. Numer. Simul. 63, 57 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. X Y Wen, Rep. Math. Phys. 71, 15 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. H Q Zhao, Z N Zhu and J L Zhang, Commun. Theor. Phys. 56, 23 (2011)

    Article  ADS  Google Scholar 

  27. X Y Wen, Appl. Math. Comput. 218, 5796 (2012)

    MathSciNet  Google Scholar 

  28. X Y Wen, Z Y Yan and B A Malomed, Chaos 26, 123110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. X Y Wen, E. Asian J. Appl. Math. 8, 100 (2018)

    Article  Google Scholar 

  30. R Guo, J Y Song, H T Zhang and F H Qi, Mod. Phys. Lett. B 32, 1850152 (2018)

    Article  ADS  Google Scholar 

  31. X Y Wen and D S Wang, Wave Motion 79, 84 (2018)

    Article  MathSciNet  Google Scholar 

  32. X Y Wen, X H Meng, X G Xu and J T Wang, Appl. Math. Lett. 26, 1076 (2013)

    Article  MathSciNet  Google Scholar 

  33. Y T Wu and X G Geng, J. Phys. A 31, 677 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  34. F J Yu and S Feng, Math. Methods Appl. Sci. 40, 5515 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. X X Xu, Commun. Nonlinear Sci. Numer. Simul. 23, 192 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. X X Xu and Y P Sun, J. Nonlinear Sci. Appl. 10, 3328 (2017)

    Article  MathSciNet  Google Scholar 

  37. S Y Lou, B Tong, M Jia and J H Li, e-print arXiv:0711.0420 (2007)

  38. J H He and X H Wu, Chaos Solitons Fractals 241, 700 (2006)

    Article  ADS  Google Scholar 

  39. P Liu and S Y Lou, Chin. Phys. Lett. 27, 020202 (2010)

    Article  ADS  Google Scholar 

  40. M J Ablowitz and J F Ladik, Stud. Appl. Math. 57, 1 (1977)

    Article  Google Scholar 

  41. R Sahadevan and S Balakrishnan, J. Math. Phys. 49, 113510 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  42. H Q Zhao, Z N Zhu and J L Zhang, Chin. Phys. Lett. 28, 050202 (2011)

    Article  ADS  Google Scholar 

  43. H Q Zhao and Z N Zhu, J. Math. Phys. 52, 023512 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  44. J K Yang, Nonlinear waves in integrable and nonintegrable systems (SIAM, Philadelphia, 2010)

    Book  Google Scholar 

  45. L Lee, G Lyng and I Vankova, Physica D 241, 1767 (2012)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University (QXTCP B201704), the NSFC under Grant Nos 11375030 and 61471406, the Beijing Natural Science Foundation under Grant No. 1153004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yong Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Wen, XY. Modulational instability and dynamics of rational soliton solutions for the coupled Volterra lattice equation associated with \(4\times 4\) Lax pair. Pramana - J Phys 93, 23 (2019). https://doi.org/10.1007/s12043-019-1784-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1784-5

Keywords

PACS Nos

Navigation