Skip to main content
Log in

Ab initio study of the fundamental properties of \(\hbox {Zn}_{1-x} \hbox {TM}_{x} \hbox {Se}\) (TM\(=\)Mn, Co and Fe)

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The structural, electronic, magnetic, thermal and elastic properties of Zn\(_{1-x}\)TM\(_{x}\)Se (TM \(=\) Mn, Co and Fe) ternary alloys are investigated at x = 0, 0.25, 0.50, 0.75 and 1.00 in the zincblende (B3) phase. The calculations are performed using all-electron full-potential linearised augmented plane-wave (FP-LAPW) method within the framework of the density functional theory (DFT) and the generalised gradient approximation (GGA). The electronic and magnetic properties were performed using the modified Becke–Johnson potential combined with the GGA correlation (mBJ-GGA). The electronic structures are found to exhibit a semiconducting behaviour for Zn\(_{1-x}\)Mn\(_{x}\)Se and Zn\(_{1-x}\)Co\(_{x}\)Se and a half-metallic behaviour for Zn\(_{1-x}\)Fe\(_{x}\)Se alloys at all concentrations, while CoSe with \(x = 1.00\) is found to exhibit a metallic behaviour. The calculated magnetic moment per substituted transition metal (TM) Mn, Co and Fe atoms for half-metallic compounds are found to be 2.5, 1.5 and 2 \(\mu \)\(_{\mathrm{B}}\), respectively. The p–d hybridisation between the TM d- and Se p-states reduces the local magnetic moment of Mn, Co and Fe and induces small local magnetic moments on Zn and Se sites. In addition, we discuss the mechanical behaviour of binary and ternary compounds and all compounds studied here are mechanically stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I Zutic, J Fabian and S Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  2. T Roy and A Chakrabarti, Pramana – J. Phys. 89: 1401 (2017)

    Google Scholar 

  3. S A Wolf, D D Awschalom, R A Buhrman, J M Daughton, S Von Molnar, M L Roukes, A Y Chtchelkanova and D M Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  4. D Chib, M Sawicki, Y Nishitani, Y Nakatani, F Matsukura and H Ohno, Nature 455, 515 (2008)

    Article  ADS  Google Scholar 

  5. T Diet, H Ohno, F Matsukura, J Cibert and D Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  6. D A Schwartz, K R Kittilstved and D R Gamelin, Appl. Phys. Lett. 85, 1395 (2004)

    Article  ADS  Google Scholar 

  7. X Liu and J K Furdyna, J. Appl. Phys. 95, 7754 (2004)

    Article  ADS  Google Scholar 

  8. M Jain, Diluted magnetic semiconductors (World Scientific, Singapore, 1991)

    Book  Google Scholar 

  9. S M Alay-e-Abbas, K M Wong, N A Noor, A Shaukat and Y Lei, Solid State Sci. 14, 1525 (2012)

    Article  ADS  Google Scholar 

  10. Ch Bourouis and A Meddour, J. Magn. Magn. Mater. 324, 1040 (2012)

    Article  ADS  Google Scholar 

  11. M Sajjad, H X Zhang, N A Noor, S M Alay-e-Abbas, M Younas, M Abid and A Shaukat, J. Supercond. Nov. Magn. 27, 2327 (2014)

    Article  Google Scholar 

  12. M Sajjad, H X Zhang, N A Noor, S M Alay-e-Abbas, A Shaukat and Q Mahmood, J. Magn. Magn. Mater. 343, 177 (2013)

    Article  ADS  Google Scholar 

  13. E Kulatov, H Nakayama, H Ohta, K Motizukid, Yu Uspenskii and H Mariette, J. Magn. Magn. Mater. 272, 1911 (2004)

    Article  ADS  Google Scholar 

  14. A Deneuville, D Tanner and P H Holloway, Phys. Rev. B 43, 6544 (1991)

    Article  ADS  Google Scholar 

  15. U Philipose, P Sun, T Xu, H E Ruda, L Yang and K L Kavanagh, J. Appl. Phys. 101, 014326 (2007)

    Article  ADS  Google Scholar 

  16. S Zh Karazhanov, P Ravindran, A Kjekshus, H Fjellvåg and B G Svensson, Phys. Rev. B 75, 155104 (2007)

    Article  ADS  Google Scholar 

  17. D J Sing, Plane waves, pseudopotentials and the LAPW method (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994)

    Book  Google Scholar 

  18. W Kohn and L J Sham, Phys. Rev. 140, B1133 (1965)

    Article  ADS  Google Scholar 

  19. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz, WIEN2K, an augmented plane wave plus local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität, Wien, Austria, 2014), ISBN633-9501031-1-2

  20. P Hohenberg and W Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  Google Scholar 

  21. J P Perdew, S Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  22. F D Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  ADS  Google Scholar 

  23. E Engel and S H Vosko, Phys. Rev. B 47, 13164 (1993)

    Article  ADS  Google Scholar 

  24. F Tran and P Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  25. O Zakharov, A Rubio, X Blase, M L Cohen and S G Louie, J. Phys. Rev. B 50(15) (1994)

  26. H Kim, R Vogelgesang, A K Ramdas, F C Peiris, U Bindley and J K Furdyna, Phys. Rev. B 58, 6700 (1998)

    Article  ADS  Google Scholar 

  27. W Zhou and S Wu, J. Magn. Magn. Mater. 395, 166 (2015)

    Article  ADS  Google Scholar 

  28. L A Kolodziejski, R L Gunshor, N Otsuka, B P Gu, Y Hefetz and A V Nurmikko, Appl. Phys. Lett. 48, 1482 (1986)

    Article  ADS  Google Scholar 

  29. L Vegard, Z. Phys. 5, 17 (1921)

    Article  ADS  Google Scholar 

  30. H Yahi and A Meddour, J. Magn. Magn. Mater. 401, 116 (2016)

    Article  ADS  Google Scholar 

  31. M Bilal, M Shafiq, I Ahmad and I Khan, J. Semicond. 35, 072001 (2014)

    Article  ADS  Google Scholar 

  32. D Varshney, U Sharma and N Kaurav, J. Phys.: Condens. Matter 20, 075204 (2008)

    ADS  Google Scholar 

  33. R Khenata, A Bouhemadou, M Sahnoun, A H Reshak, H Baltache and M Rabah, Comput. Mater. Sci. 38, 29 (2006)

    Article  Google Scholar 

  34. P K Saini, D Singh and D S Ahlawat, Chalcogenide Lett. 11, 405 (2014)

    Google Scholar 

  35. F Benkabou, H Aourag and M Certier, Mater. Chem. Phys. 66, 10 (2000)

    Article  Google Scholar 

  36. B N Brahmi, A E Merad, M R Boufatah, CNPA VIII, Béjaia, 11–13 (2008)

  37. T Teshome and A Datta, J. Phys. Chem. C 121(28), 15169 (2017)

    Article  Google Scholar 

  38. K-H Hellwege and O Madelung (eds), Semi-magnetic semiconductors, In: Landolt–Bornstein, New Series, Group III (Springer, New York, 1982)

  39. H Venghaus, Phys. Rev. B 19, 3071 (1979)

    Article  ADS  Google Scholar 

  40. P Dufek, P Blaha and K Schwarz, Phys. Rev. B 50, 7279 (1994)

    Article  ADS  Google Scholar 

  41. F El Haj Hassan, H Akbarzadeh and S J Hashemifar, J. Phys.: Condens. Matter. 16, 3329 (2004)

    ADS  Google Scholar 

  42. K L Yao, G Y Gao, Z L Liu and L Zhu, Solid State Commun. 133, 301 (2005)

    Article  ADS  Google Scholar 

  43. M A Blanco, E Francisco and V Luaña, Comput. Phys. Commun. 158, 57 (2004)

    Article  ADS  Google Scholar 

  44. A Otero-de-la-Roza and V Luaña, Comput. Phys. Commun. 182, 1708 (2011)

    Article  ADS  Google Scholar 

  45. P Ravindran, L Fast, P A Korzhavyi, B Johansson, J Wills and O Eriksson, J. Appl. Phys. 84, 4891 (1998)

    Article  ADS  Google Scholar 

  46. Y A Burenkov, S Y Davydov and S P Nikanorov, Phys. Solid State 17, 1446 (1975)

    Google Scholar 

  47. H Y Wang, J Cao, X Y Huang and J M Huang Condens. Matter Phys. 15, 13705 (2012)

    Article  Google Scholar 

  48. B H Lee, J. Appl. Phys. 41, 2984 (1970)

    Article  ADS  Google Scholar 

  49. R Hill, Proc. Phys. Soc. A 65, 349 (1952)

    Article  ADS  Google Scholar 

  50. W Voigt, Lehrbush der Kristallphysik (B.G. Taubner, Leipzig, 1928)

  51. S F Pagh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

  52. F Peng, D Chen and X D Yang, Solid State Commun. 149, 2135 (2009)

    Article  ADS  Google Scholar 

  53. A Otero-de-la-Roza, D Abbasi-Pérez and V Luaña, Comput. Phys. Commun. 182, 2232 (2011)

    Article  ADS  Google Scholar 

  54. A Reuss, Z Angew. Math. Mech. 9, 49 (1929)

    Article  Google Scholar 

  55. Z Charifi, H Baaziz, Y Saeed, A H Reshak and F Soltani, Phys. Status Solidi B 249, 18 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Algerian University Research Project (CNEPRU) under No. B00L02UN280120140051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Baaziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, F., Baaziz, H., Charifi, Z. et al. Ab initio study of the fundamental properties of \(\hbox {Zn}_{1-x} \hbox {TM}_{x} \hbox {Se}\) (TM\(=\)Mn, Co and Fe). Pramana - J Phys 93, 18 (2019). https://doi.org/10.1007/s12043-019-1775-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1775-6

Keywords

PACS Nos

Navigation