Skip to main content
Log in

Monte Carlo simulation of charge transport in disordered organic systems using buffer lattice at the boundary

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we present an alternative method for simulating the charge transport in disordered organic materials by using a buffer lattice at the boundary. This method does not require careful tracking of the carrier’s hopping pattern across boundaries. The suitability of this method is established by reproducing the field dependence of mobility, carrier relaxation and carrier diffusion in disordered organic systems obtained by simulating the charge transport in a lattice without implementing any boundary conditions along the electric field direction. The significance of the buffer lattice is emphasised by simulating the field dependence of mobility without using a buffer lattice, which results in negative field dependence of mobility (NFDM) at low field regime due to the extra bias the carrier gains from the neglected hops at the boundaries along the direction of the electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H Bässler, Phys. Status Solidi B 175, 15 (1993) S V Noikov and A V Vanikov, J. Phys. Chem. C 113, 2532 (2009)

  2. P M Borsenberger, L Pautmeier and H Bässler, J. Chem. Phys. 94, 5447 (1991)

    Article  ADS  Google Scholar 

  3. L Pautmeier, R Richert and H Bässler Synth. Met. 37, 271 (1990) Y N Gartsetin and E M Conwell, Chem. Phys. Lett. 245, 351 (1995)

  4. P M Borsenberger and D S Weiss, Organic photoreceptors for xerography (Marcel Dekker, New York, 1998)

    Google Scholar 

  5. M Bahrami and E Mohajerani, J. Comput. Electron. 15, 672 (2016)

    Article  Google Scholar 

  6. C Yao, Y Yang, L Li, M Bo, C Peng and J Wang, J. Mater. Chem. C 6, 6146 (2018) C Yao, C Peng, Y Yang, L Li, M Bo, C Peng and J Wang, J. Phys. Chem. C 22, 22273 (2018)

  7. R Richert, L Pautmeier and H Bassler, Phys. Rev. Lett. 63, 547 (1989)

    Article  ADS  Google Scholar 

  8. S V Rakhmanova and E M Conwell, Appl. Phys. Lett. 76, 3822 (2000)

    Article  ADS  Google Scholar 

  9. B Hartenstein, H Bässler, S Heun, P Borsenberger, M Van der Auweraer and F C De Schryyer, Chem. Phys. 191, 321 (1995)

    Article  Google Scholar 

  10. J Zhou, Y C Zhou, X D Gao, C Q Wu, X M Ding and X Y Hou, J. Phys. D 42, 035103 (2009)

    Article  ADS  Google Scholar 

  11. S Raj Mohan, M P Joshi and M P Singh, Org. Electron. 9, 355 (2008)

    Article  Google Scholar 

  12. S Raj Mohan, M P Joshi and M P Singh, Chem. Phys. Lett. 470, 279 (2009)

    Article  ADS  Google Scholar 

  13. H Gould and J Tobochnik, An introduction to computer simulation methods: Application to physical systems (Addison-Wesley Publishing Company, New York, 1988)

    Google Scholar 

  14. W F van Gunsteren and H J C Berendsen, Angew. Chem. Int. Ed. Engl. 29, 992 (1990)

    Article  Google Scholar 

  15. G Schönherr, H Bässler and M Silver, Philos. Mag. 44, 47 (1981) S Raj Mohan, M P Singh and M P Joshi, J. Phys. Chem. C 116, 2555 (2012)

  16. A Miller and E Abrahams, Phys. Rev. B 120, 745 (1960)

    Article  ADS  Google Scholar 

  17. I Naik, S Handsa and A K Rastogi, Pramana – J. Phys. 86, 127 (2016)

    Article  ADS  Google Scholar 

  18. I I Fishchuk, A Kadashchuk, H Bässler and M Abkowitz, Phys. Rev. B 70, 245212 (2004)

    Article  ADS  Google Scholar 

  19. H Cordes, S D Baranovski, K Kohary, P Thomas, S Yamasaki, F Hensel and J H Wendorff, Phys. Rev. B 63, 094201 (2000)

    Article  ADS  Google Scholar 

  20. B Movaghar, M Grunewald, B Ries, H Bässler and D Wrutz, Phys. Rev. B 33, 5545 (1986)

    Article  ADS  Google Scholar 

  21. S Raj Mohan, M P Joshi and M P Singh, Org. Electron. 11, 1642 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Raj Mohan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, S.R., Singh, M.P. & Joshi, M.P. Monte Carlo simulation of charge transport in disordered organic systems using buffer lattice at the boundary. Pramana - J Phys 93, 8 (2019). https://doi.org/10.1007/s12043-019-1766-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1766-7

Keyword

PACS Nos

Navigation