Skip to main content
Log in

Tunable fluorescence from natural carbon source: Pandanus

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Carbon materials possessing photoluminescence properties are considered as potential candidates in a wide range of photonic and optoelectronic applications. In this work, the cellulose derived from the natural source, Pandanus, is autoclave-treated for the synthesis of fluorescent carbon. The natural fibres are greatly preferred over synthetic ones due to their cost-effectiveness, easy processability, non-abrasivity, non-toxic and environment-friendly characteristics along with high mechanical strength and damage tolerance. These properties enable them to be used as templates for synthesis, as important reinforcement materials for commercial thermoplastics and for making value-added products. In this study, the synthesised sample is subjected to structural, morphological, elemental and optical characterisations. These studies reveal that the sample can be used as a low-cost tunable light-emitting source for photonic, biomedical and biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M Li, X Li, H-N Xiao and T James, Chem. Open 6(6), 685 (2017), https://doi.org/10.1002/open.201700133

    Article  Google Scholar 

  2. S A Smagulova, M N Egorova, A E Tomskaya and A N Kapitonov, J. Mater. Sci. Eng6, 5 (2017), https://doi.org/10.4172/2169-0022.1000376

    Article  Google Scholar 

  3. M S Swapna and S Sankararaman, J. Mater. Sci. Nanotechnol.  5(1), 103 (2017), https://doi.org/10.15744/2348-9812.5.103

    Article  Google Scholar 

  4. M S Swapna and S Sankararaman, Nanosyst. Phys. Chem. Math. 8(6), 809 (2017)

    Article  Google Scholar 

  5. M S Swapna and S Sankararaman, Int. J. Mater. Sci. 12(3), 541 (2017)

    Google Scholar 

  6. M S Swapna, C Beryl, S S Reshma, C Veena, V S Vishnu, P M Radhamany and S Sankararaman, Bio. Nano Sci7, 583 (2017)

    Google Scholar 

  7. M S Swapna, V M Pooja, S A Anamika, S Soumya and S Sankararaman, JOJ Mater. Sci. 1(4), 555566 (2017)

    Google Scholar 

  8. H V Saritha Devi, M S Swapna, Vimal Raj, G Ambadas and S Sankararaman, Mater. Res. Express 5, 015603 (2018), https://doi.org/10.1088/2053-1591/aaa367

    Article  ADS  Google Scholar 

  9. M S Swapna, H V Saritha Devi, S Riya, G Ambadas and S Sankararaman, Mater. Res. Express 4(12), 125602 (2017), https://doi.org/10.1088/2053-1591/aa9db9

    Article  ADS  Google Scholar 

  10. A J Silvestre, M J Santos and O Conde, Key Eng. Mater. 56, 230 (2002), https://doi.org/10.4028/www.scientific.net/KEM.230-232.56

    Article  Google Scholar 

  11. M Sevilla and A B Fuertes, Carbon 47, 2281 (2009), https://doi.org/10.1016/j.carbon.2009.04.026

    Article  Google Scholar 

  12. A G Duman and A H Windle, J. Mater. Sci. 47, 4236 (2012), https://doi.org/10.1007/s10853-011-6081-8

    Article  ADS  Google Scholar 

  13. Q Wu and D Pan, Text. Res. J. 72, 405 (2002)

    Article  Google Scholar 

  14. H Abral, H Andriyanto, R Samera, S M Sapuan and M R Ishak, Polym.-Plast. Technol. Eng. 51, 500 (2012), https://doi.org/10.1080/03602559.2011.651246

    Article  Google Scholar 

  15. M D Teli and A C Jadhav, Int. J. Sci. Res. 6(1), 1370 (2017)

    Google Scholar 

  16. M S Swapna, H V Saritha Devi and S Sankararaman, Appl. Phys. A 124, 50 (2018), https://doi.org/10.1007/s00339-017-1445-9

  17. M S Swapna and S Sankararaman, Mater. Res. Express 5, 016203 (2018), https://doi.org/10.1088/2053-1591/aaa656

    Article  ADS  Google Scholar 

  18. A D Broadbent, Reference module in chemistry, molecular sciences and chemical engineering, Encyclopedia of spectroscopy and spectrometry, 3rd edn, 321–327 (2017), https://doi.org/10.1016/B978-0-12-803224-4.00014-5

    Chapter  Google Scholar 

  19. A Stockman, CIE physiological based color matching function and chromaticity diagrams, Encyclopedia of Color Science and Technology (Springer Science, New York, 2015)

    Google Scholar 

  20. M Lemos, K Sárniková, F Bot, M Anese and G Hungerford, Biosensors 5, 367 (2015)

    Article  Google Scholar 

  21. E Ben-Dar, Y Inbar and Y Chen, Remote Sens. Environ61, 1 (1997)

    Article  ADS  Google Scholar 

  22. P J Curran, J L Dungan, B A Macler, S E Plummer and D L Peterson, Remote Sens. Environ. 39, 153 (1992)

    Article  ADS  Google Scholar 

  23. C D Elvidge, Int. J. Remote Sens11, 1775 (1990)

    Article  ADS  Google Scholar 

  24. T M McLellan, J D Aber, M E Martin, J M Melillo and K J Nadelhoffer, Can. J. For. Res. 21, 1684 (1991)

    Article  Google Scholar 

  25. X Li, C Sun, B Zhou and Y He, Sci. Rep. 5, 17210 (2015), https://doi.org/10.1038/srep17210

    Article  ADS  Google Scholar 

  26. F J Kolpak and J Blackwell, Macromolecules 9(2), 273 (1976)

    Article  ADS  Google Scholar 

  27. S Yano, H Hatakeyama and T Hatakeyama, J. Appl. Polym. Sci. 20(12), 3221 (1976)

    Article  Google Scholar 

  28. B L Sun, J L Liu, S J Liu and Q Yang, Holzforschung 65, 689 (2011)

    Article  Google Scholar 

  29. Y Pu, A J Ragauskas, L A Lucia, V Naithani and H Jameel, J. Wood Chem. Technol28, 122 (2008), https://doi.org/10.1080/02773810802125008

    Article  Google Scholar 

  30. G Aggarwal, P Mishra, B Joshi and S S Islam, Pramana – J. Phys83(3), 427 (2014), https://doi.org/10.1007/s12043-014-0773-y

    Article  ADS  Google Scholar 

  31. W M He and H R Hu, Bioresource Technol140, 299 (2013), https://doi.org/10.1016/j.biortech.2013.04.115

    Article  Google Scholar 

  32. F Xu, J M Yu, T Tesso, F Dowell and D H Wang, Appl. Energy 104, 801 (2013), https://doi.org/10.1016/j.apenergy.2012.12.019

    Article  Google Scholar 

  33. N Gasanly, Pramana – J. Phys. 91: 30 (2018), https://doi.org/10.1007/s12043-018-1602-5

    Article  ADS  Google Scholar 

  34. A Penzkofer, Int. J. Mol. Sci13, 9157 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Sankararaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swapna, M.S., Saritha Devi, H.V., Ambadas, G. et al. Tunable fluorescence from natural carbon source: Pandanus. Pramana - J Phys 92, 80 (2019). https://doi.org/10.1007/s12043-019-1755-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1755-x

Keywords

PACS Nos

Navigation