Skip to main content

Laser-induced modulation of optical band-gap parameters in the III–V-type semiconductors from the density-of-state (DOS) calculations

Abstract

Optical band gap (\(E_{\mathrm{g}0} \)) is a parameter of paramount importance in describing various transport and opto-electronic properties of the III–V-type low band-gap semiconductors. In the present communication, an attempt has been made to develop an energy–momentum (\(E{-}{\bar{k}} \)) dispersion relation for studying the density-of-state (DOS) and band-gap-related parameters. The external laser excitation has been treated as a perturbation. It has been shown theoretically that due to such excitation with different intensity (I) and wavelength \((\lambda )\), the band edge of the conduction band (CB) of the III–V compound semiconductors moves vertically upward, indicating laser modulation (increase) of \(E_{\mathrm {g}0} \) and related parameters compared to those of the normal ones (unperturbed). Therefore, in the presence of light, the original CB edge forms a pseudo-CB edge above the unperturbed CB edge in the forbidden band (FB) zone. This new development of the (\(E{-}{\bar{k}} \)) relationship has also been extended for the estimation of exact optical effective mass (OPEM) of an electron in some III–V compound semiconductors. The OPEM variation with carrier concentration showed a continuous decreasing nature, while the corresponding variation of electron effective mass (EEM) (without laser excitation) exhibited an increasing trend. The present theoretical results would be important for the deeper understanding of the variation of OPEM with I and \(\lambda \). The observed new results will also be beneficial for studying laser-induced effects in semiconductor heterostructures with different applications in optoelectronic devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    D M Arabi and S Nasser, Pramana – J. Phys. 86, 637 (2016)

    Article  Google Scholar 

  2. 2.

    G Gulyamov and A G Gulyamov, Semiconductors 49, 819 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    G Gulyamov, U I Erkaboev and A G Gulyamov, Condens. Matter. Phys. (Hindawi), 2017, 1, https://doi.org/10.1155/2017/6747853

    Article  Google Scholar 

  4. 4.

    H Y Fan, Phys. Rev. 82, 900 (1951)

    ADS  Article  Google Scholar 

  5. 5.

    P K Chakraborty and B N Mondal, Indian J. Phys. 92, 303 (2018)

    ADS  Article  Google Scholar 

  6. 6.

    R Hill and G D Pitt, Solid State Commun. 17, 739 (1975)

    ADS  Article  Google Scholar 

  7. 7.

    R R Koropecki and J A Schmidt, J. Appl. Phys. 91, 8965 (2002)

    ADS  Article  Google Scholar 

  8. 8.

    N Sangiorgi, L Aversa, R Tatti, R Verucchi and A Sanson, Opt. Mater. 64, 18 (2017)

    ADS  Article  Google Scholar 

  9. 9.

    P K Chakraborty, S Choudhury and K P Ghatak, Physica B 387, 333 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    B R Nag, Electron transport in compound semiconductors (Springer, Berlin, 1980) Vol. 11, p. 303

    Google Scholar 

  11. 11.

    Z Zhang, L Qian, D Fan and X Deng, Appl. Phys. Lett. 60, 19 (1992)

    Google Scholar 

  12. 12.

    B K Chaudhuri, B N Mondal and P K Chakraborty, Pramana – J. Phys. 90: 18 (2018)

    ADS  Article  Google Scholar 

  13. 13.

    N V Pavlov and G G Zegrya, Semiconductors 49, 604 (2015)

    ADS  Article  Google Scholar 

  14. 14.

    H S Brandi, A Latge and L E Oliveira, Solid State Commun. 117, 83 (2001)

    ADS  Article  Google Scholar 

  15. 15.

    H S Brandi, A Latge and L E Oliveira, Solid State Commun. 107, 32 (1998)

    ADS  Article  Google Scholar 

  16. 16.

    K P Ghatak and S Bhattacharya, in: Heavy-doped 2D-quantizied structures and the Einstein relation, Springer reacts in modern physics (Springer International Publishing, Switzerland, 2015) Vol. 260, Chapter 10, p. 303, Online ISBN: 978-3-319-08380-3, Series Online ISSN: 1615.0430

  17. 17.

    D M Esterling, Solid State Commun. 15, 351 (1975)

    ADS  Article  Google Scholar 

  18. 18.

    H X Tang, F G Monzon, R Lifshitz, M C Cross and M L Roukes, Phys. Rev. B 61, 4437 (2000)

    ADS  Article  Google Scholar 

  19. 19.

    V Virkkala, V Havu, F Tuomisto and M J Puska, Phys. Rev. B 88, 035204 (2013)

    ADS  Article  Google Scholar 

  20. 20.

    Y Zhang, A Mascarenhas and L W Wang, Phys. Rev. B 71, 155201 (2005)

    ADS  Article  Google Scholar 

  21. 21.

    V Virkkala, V Havu, F Tuomisto and M J Puska, Phys. Rev. B 88, 235201 (2013)

    ADS  Article  Google Scholar 

  22. 22.

    W Zawadzki, Handbook of semiconductor physics (North Holland, Amsterdam, 1982) Vol. 1, p. 719

    Google Scholar 

  23. 23.

    L I Schiff, Quantum mechanics (McGraw Hill, London, 1968)

    Google Scholar 

  24. 24.

    E Gojaev, U Abdurahmanova, Z Dzhakhangirli and S Mehdieva, Open J. Inorg. Non-Metallic Mater. 4, 13 (2014)

    Article  Google Scholar 

  25. 25.

    Z G Yu, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  26. 26.

    J Callaway, Energy band theory (Academic Press, New York, 1964) Vol. 284, p. 284

    MATH  Google Scholar 

  27. 27.

    P Dzwig, V Crum, M G Burt and J C Inkson, Solid State Commun. 39, 407 (1981)

    ADS  Article  Google Scholar 

  28. 28.

    P K Chakraborty, L J Singh and K P Ghatak, J. Appl. Phys. 95, 5311 (2004)

    ADS  Article  Google Scholar 

  29. 29.

    B R Nag, Physics of quantum well devices (Kluwer Academic Publishers, London, 2000) Vol. 107

    Google Scholar 

  30. 30.

    Y Zhang, A Mascarenhas, J F Geisz, H P Xin and C W Tu, Phys. Rev. B 63, 085205 (2001)

    ADS  Article  Google Scholar 

  31. 31.

    D Veal, L F J Piper, S Jollands, B R Bennett, P H Jefferson, P A Thomas, C F McConville, B N Murdin, L Buckle, G W Smith and T Ashley, Appl. Phys. Lett. 87, 132101 (2005)

    ADS  Article  Google Scholar 

  32. 32.

    J N Hodgson, J. Phys. Chem. Solids 24, 1213 (1963)

    ADS  Article  Google Scholar 

  33. 33.

    R K Willardson and A C Beer eds, Semiconductors and semimetals (Academic Press, New York, 1966) Vol. 102

    Google Scholar 

  34. 34.

    H Miyazawa and H Ikoma, Solid State Commun. 5, 229 (1967)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Indian Association for the Cultivation of Science, Jadavpur, Kolkata for providing library and computer facilities to complete the work. One of the authors (BKC) is also grateful to Prof. S C Sarkar, CRCT, Jadavpur University, Kolkata, for providing facilities for performing the work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B K Chaudhuri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, P.K., Mondal, B.N. & Chaudhuri, B.K. Laser-induced modulation of optical band-gap parameters in the III–V-type semiconductors from the density-of-state (DOS) calculations. Pramana - J Phys 92, 85 (2019). https://doi.org/10.1007/s12043-019-1745-z

Download citation

Keywords

  • Density of state
  • III–V compound semiconductor
  • optical band gap
  • parabolic band
  • optoelectronics
  • laser optics

PACS Nos

  • 42.40.Nn
  • 42.55.Px
  • 42.70.−a
  • 71.15.Mb