Advertisement

Pramana

, 92:83 | Cite as

Ensemble in phase space: Statistical formalism of quantum mechanics

  • Chol JongEmail author
  • Byong-Il Ri
  • Gwang-Dong Yu
  • Song-Guk Kim
  • Son-Il Jo
  • Shin-Hyok Jon
Article
  • 34 Downloads

Abstract

We present an alternative formalism of quantum mechanics tailored to statistical ensemble in phase space. The purpose of our work is to show that it is possible to establish an alternative autonomous formalism of quantum mechanics in phase space using statistical methodology. The adopted perspective leads to obtaining within the framework of its theory the fundamental quantum-mechanical equation without recourse to the other formulations of quantum mechanics, and gives the idea for operators pertaining to dynamical quantities. The derivation of this equation starts with the ensemble in phase space and, as a result, reproduces Liouville’s theorem and virial theorem for quantum mechanics. We have explained with the help of this equation the structure of quantum mechanics in phase space and the approximation to the Schrödinger equation. Furthermore, we have shown that this formalism provides reasonable results of quantisation such as the quantisation of harmonic oscillation, the two-slit interference and the uncertainty relation. In particular, we have demonstrated that this formalism can easily give the relativistic wave equation without using the linearisation of the Hamiltonian operator. The ultimate outcome this formalism produces is that primary and general matters of quantum mechanics can be studied reasonably within the framework of statistical mechanics.

Keywords

Quantum ensemble theory quantum geometry quantum mechanics quantum tomography relativistic wave equations 

PACS Nos

05.30.Ch 03.65.–w 03.65.Wj 03.65.Pm 

Notes

Acknowledgements

This work was supported partially by the Committee of Education, Democratic People’s Republic of Korea, under the project entitled ‘Statistical Formalism of Quantum Mechanics’. The authors thank Profs Chol-Jun Yu and Hak-Chol Pak from Kim Il Sung University and Profs Il-Hwan Kim and Se-Hun Ryang from the University of Science for their advice and help. Prof. Nam-Hyok Kim from Kim Il Sung University and Prof. Yon-Il Kim from the State Academy, DPR Korea, are appreciated for valuable discussion. The authors would like to thank the editors and anonymous reviewers for their comments and advice.

References

  1. 1.
    E Wigner, Phys. Rev. 40, 749 (1932)ADSCrossRefGoogle Scholar
  2. 2.
    H Groenewold, Physica 12, 405 (1946)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    C K Zachos, Quantum mechanics in phase space (World Scientific, New Jersey, 2005) p. 1Google Scholar
  4. 4.
    R P Feynman, Phys. Rev. 80, 440 (1950)ADSCrossRefGoogle Scholar
  5. 5.
    J V Neuman, Math. Ann. 104, 570 (1931)MathSciNetCrossRefGoogle Scholar
  6. 6.
    S Goldstein, Phys. Today 51, 38 (1998)Google Scholar
  7. 7.
    S Goldstein, R Tumulka and N Zanghì, Bohmian trajectories as the foundation of quantum mechanics, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 1Google Scholar
  8. 8.
    D Home and A Whitaker, Einstein’s struggles with quantum theory (Springer, Berlin, 2007) Chapters 3, 8, 10Google Scholar
  9. 9.
    P Riggs, Quantum causality (Springer, Berlin, 2009) Chapters 3 and 4Google Scholar
  10. 10.
    R E Wyatt, Quantum dynamics with trajectories (Springer, Berlin, 2005) Chapters 2–4, p. 11Google Scholar
  11. 11.
    J Moyal, Proc. Camb. Philos. Soc. 45, 99 (1949)ADSCrossRefGoogle Scholar
  12. 12.
    T Takabayasi, Prog. Theor. Phys. 8, 143 (1952)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    D Bohm, Phys. Rev. 85, 166, 180 (1952)ADSCrossRefGoogle Scholar
  14. 14.
    V E Madelung, Z. Phys. 40, 322 (1926)ADSCrossRefGoogle Scholar
  15. 15.
    V I Sbitnev, Bohmian trajectories and the path integral paradigm-complexified Lagrangian mechanics, in: Theoretical concepts of quantum mechanics edited by M R Pahlavani (InTech, Croatia, 2012) p. 313Google Scholar
  16. 16.
    Á S Sanz and S Miret-Artés, An account of quantum interference from a hydrodynamical perspective, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 197Google Scholar
  17. 17.
    K H Hughes and I Burghardt, A hybrid hydrodynamic-Liouvillian approach to non-Markovian dynamics, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 163Google Scholar
  18. 18.
    A Tilbi, T Boudjedaa and Merad, Pramana – J. Phys. 87(5): 66 (2016)Google Scholar
  19. 19.
    D Dürr and S Teufel, Bohmian mechanics (Springer, Berlin, 2009) Chapters 9, 16Google Scholar
  20. 20.
    C Meier, J A Beswick and T Yefsah, Mixed quantum\(/\)classical dynamics: Bohmian and DVR stochastic trajectories, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 149Google Scholar
  21. 21.
    S K Ghosh, Quantum fluid dynamics within the framework of density functional theory, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 183Google Scholar
  22. 22.
    C Chou and R E Wyatt, Recent analytical studies of complex quantum trajectories, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 283Google Scholar
  23. 23.
    F Rahmani, M Goldshani and M Sarbishel, Pramana – J. Phys. 86(4), 747 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    F Rahmani, M Goldshani and M Sarbishel, Pramana – J. Phys. 87(2): 23 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    B Poirier, Trajectory-based theory of relativistic quantum particles, arXiv:1208.6260v1 [quant-ph]
  26. 26.
    D Campos, Pramana – J. Phys. 88(3): 54 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    D Campos, Pramana – J. Phys. 87(2): 27 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    H Weyl, Z. Phys. 46, 1 (1927)ADSCrossRefGoogle Scholar
  29. 29.
    G Baker, Phys. Rev. 109, 2198 (1958)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    T Takabayasi, Prog. Theor. Phys. 11, 341 (1954)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    D Fairlie, Proc. Camb. Philos. Soc. 60, 581 (1964)ADSCrossRefGoogle Scholar
  32. 32.
    A Royer, Phys. Rev. A 15, 449 (1977)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    J Dahl, Mol. Phys. 47, 1001 (1982)ADSCrossRefGoogle Scholar
  34. 34.
    T Curtright and C Zachos, Mod. Phys. Lett. A 16, 2381 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    G J Iafrate, H L Grubin and D K Ferry, J. Phys. Colloq. 42, 307 (1981)CrossRefGoogle Scholar
  36. 36.
    C L Gardner, SIAM J. Appl. Math. 54, 409 (1994)Google Scholar
  37. 37.
    I Gasser and P A Markowich, Asym. Anal. 14, 97 (1997)Google Scholar
  38. 38.
    J G Muga, R Sala and R F Snider, Phys. Scr. 47, 732 (1993)ADSCrossRefGoogle Scholar
  39. 39.
    G Torres-Vega and J H Frederick, J. Chem. Phys. 93(12), 8862 (1990)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    W P Schleich, Quantum optics in phase space (Wiley-VCH, Berlin, 2001) Chapter 8CrossRefGoogle Scholar
  41. 41.
    I Burghardt and L S Cederbaum J. Chem. Phys. 115, 10303, 10312 (2001)ADSCrossRefGoogle Scholar
  42. 42.
    I Burghardt and K B Moller J. Chem. Phys. 115, 10312 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    J B Maddox and E R Bittner, J. Phys. Chem. B 106, 7981 (2002)CrossRefGoogle Scholar
  44. 44.
    E R Bittner, J B Maddox and I Burghardt, Int. J. Quantum Chem. 89, 313 (2002)CrossRefGoogle Scholar
  45. 45.
    S De Nicola, R Fedele, M A Manko and V I Manko, Theor. Math. Phys. 152, 1081 (2007)CrossRefGoogle Scholar
  46. 46.
    R A Monsa et al, Phys. Lett. A 315, 418 (2003)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    A S Arkhipov and Yu E Lozovik, J. Exp. Theor. Phys. 98(2), 261 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    V Madhoc, C A Riofrio and I Deutsch, Pramana – J. Phys. 87(5): 65 (2016)Google Scholar
  49. 49.
    T Curtright, T Uematsu and C Zachos, J. Math. Phys. 42, 2396 (2001)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    R P Feynman and A R Hibbs, Quantum mechanics and path integrals (McGraw-Hill, New York, 1965) Chapters 1 and 2Google Scholar
  51. 51.
    W Greiner, Quantum mechanics an introduction (Springer, Berlin, 2001) Chapter 6zbMATHGoogle Scholar
  52. 52.
    L D Landau and E M Lifshitz, Quantum mechanics non-relativistic theory (Pergamon Press, Oxford, 1991) Chapter 3zbMATHGoogle Scholar
  53. 53.
    A Donoso and C C Martens Phys. Rev. Lett. 87, 223202 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    A Donoso, Y Zheng and C C Martens J. Chem. Phys. 119, 5010 (2003)Google Scholar
  55. 55.
    B Poirier, Bipolar quantum trajectory methods, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 235Google Scholar
  56. 56.
    P R Holland, The quantum theory of motion (Cambridge University Press, Cambridge, 1993) Chapter 2CrossRefGoogle Scholar
  57. 57.
    G E Bowman, The utility of quantum forces, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 87Google Scholar
  58. 58.
    M A B Whitaker, Found. Phys. 37, 989 (2007)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    S Á Sanz and S Miret-Artés, A trajectory description of quantum processes. II. Applications (Springer-Verlag, Berlin, Heidelberg, 2014) Chapter 2CrossRefGoogle Scholar
  60. 60.
    R Penrose, The road to reality (Jonathan Cape, London, 2004) Chapter 21Google Scholar
  61. 61.
    B Dutta, N Mukun and R Simon, Pramana – J. Phys. 45(6), 471 (1995)Google Scholar
  62. 62.
    A S Holevo, Statistical structure of quantum mechanics (Springer, Berlin, 2001) Chapters 1 and 2Google Scholar
  63. 63.
    A E Faraggi and M Matone, The equivalence postulate of quantum mechanics: Main theorems, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 17Google Scholar
  64. 64.
    E R Floyd, Quantum trajectories and entanglement, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 41Google Scholar
  65. 65.
    E R Bittner and D J Kour, Quantum dynamics and supersymmetric quantum mechanics, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 53Google Scholar
  66. 66.
    P Holland, Quantum field dynamics from trajectories, in: Quantum trajectories edited by P K Chattaraj (CRC Press, New York, 2011) p. 73Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Chol Jong
    • 1
    Email author
  • Byong-Il Ri
    • 1
  • Gwang-Dong Yu
    • 2
  • Song-Guk Kim
    • 3
  • Son-Il Jo
    • 1
  • Shin-Hyok Jon
    • 1
  1. 1.Faculty of PhysicsKim Chaek University of TechnologyPyongyangDemocratic People’s Republic of Korea
  2. 2.Faculty of PhysicsKim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea
  3. 3.Faculty of PhysicsUniversity of SciencePyongyangDemocratic People’s Republic of Korea

Personalised recommendations