Skip to main content
Log in

Higher harmonic instability of electrostatic ion cyclotron waves

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Electrostatic ion cyclotron instability pertaining to the higher harmonics of proton and helium cyclotron modes is investigated in three-component magnetised plasma consisting of beam electrons, protons and doubly charged helium ions. The effect of different plasma parameters, namely, angle of propagation, number density and temperature of helium ions and electron beam speed, has been studied on the growth of proton and helium cyclotron harmonics. It is found that an increase in angle of propagation leads to the excitation of fewer harmonics of proton cyclotron waves with decreased growth rates and higher number of helium harmonics with decreased growth rates. Also, largely odd helium harmonics are excited, except for one particular case where the second harmonic also becomes unstable. The number density and temperature of ions have significant effect on the helium cyclotron instability compared to the proton cyclotron instability. Further, as the speed of electron beam is increased, the peak growth rate increases. Our results are relevant to laboratory and space plasmas where field-aligned currents exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N D’Angelo and R W Motley, Phys. Fluids 5, 633 (1962)

    Article  ADS  Google Scholar 

  2. R W Motley and N D’Angelo, Phys. Fluids 6, 296 (1963)

    Article  ADS  Google Scholar 

  3. W E Drummond and M N Rosenbluth, Phys. Fluids 5, 1507 (1962)

    Article  ADS  Google Scholar 

  4. E S Weibel, Phys. Fluids 13, 3003 (1970)

    Article  ADS  Google Scholar 

  5. J M Kindel and C F Kennel, J. Geophys. Res. 76, 3055 (1971)

    Article  ADS  Google Scholar 

  6. K F Lee, J. Plasma Phys. 8, 379 (1972)

    Article  ADS  Google Scholar 

  7. F W Perkins, Phys. Fluids 19, 1012 (1976)

    Article  ADS  Google Scholar 

  8. M Yamada, S Seiler, H W Hendel and H Ikezi, Phys. Fluids 20, 450 (1977)

    Article  ADS  Google Scholar 

  9. P M Kintner, M C Kelley, R D Sharp, A G Ghielmetti, M Temerin, C Cattell, P F Mizera and J F Fennell,J. Geophys. Res. 84, 7201 (1979)

    Article  ADS  Google Scholar 

  10. C Cattell, J. Geophys. Res. 86, 3641 (1981)

    Article  ADS  Google Scholar 

  11. H Okuda and K-I Nishikawa, J. Geophys. Res. 89, 1023 (1984)

    Article  ADS  Google Scholar 

  12. G S Lakhina, J. Geophys. Res. 92, 12161 (1987)

    Article  ADS  Google Scholar 

  13. G Ganguli, S Slinker, V Gavrishchaka and W Scales, Phys. Plasmas 9, 2321 (2002)

    Article  ADS  Google Scholar 

  14. M J Kurian, S Jyothi, S K Leju, M Isaac, C Venugopal and G Renuka, Pramana – J. Phys. 73, 1111 (2009)

    Article  ADS  Google Scholar 

  15. M Barati Moqadam Niyat, S M Khorashadizadeh and A R Niknam, Phys. Plasmas 23, 122110 (2016)

    Article  ADS  Google Scholar 

  16. B Song, D Suszcynsky, N D’Angelo and R L Merlino, Phys. Fluids B 1, 2316 (1989)

    Article  ADS  Google Scholar 

  17. C Venugopal, P J Kurian and G Renuka, Pramana – J. Phys. 37(3), 303 (1991)

    Article  ADS  Google Scholar 

  18. A Barkan, N D’Angelo and R L Merlino, Planet. Space Sci. 43, 905 (1995)

    Article  ADS  Google Scholar 

  19. V W Chow and M Rosenberg, Planet. Space Sci. 43, 613 (1995)

    Article  ADS  Google Scholar 

  20. V W Chow and M Rosenberg, Phys. Plasmas 3, 1202 (1996)

    Article  ADS  Google Scholar 

  21. S-H Kim, J R Heinrich and R L Merlino, Planet. Space Sci. 56, 1552 (2008)

    Article  ADS  Google Scholar 

  22. M Rosenberg and R L Merlino, J. Plasma Phys. 75, 495 (2009)

    Article  ADS  Google Scholar 

  23. J Sharma, S C Sharma, V K Jain and A Gahlot, J. Plasma Phys. 79, 577 (2013)

    Article  ADS  Google Scholar 

  24. A K Chattopadhyay, S V Kulkarni and R Srinivasan, Pramana – J. Phys. 85(4), 713 (2015)

    Article  ADS  Google Scholar 

  25. S R Mosier and D A Gurnett, Nature 223, 605 (1969)

    Article  ADS  Google Scholar 

  26. P M Kintner, M C Kelley and F S Mozer, Geophys. Res. Lett. 5, 139 (1978)

    Article  ADS  Google Scholar 

  27. M Temerin, M Woldorff and F S Mozer, Phys. Rev. Lett. 43, 1941 (1979)

    Article  ADS  Google Scholar 

  28. D T Young, S Perraut, A Roux, C de Villedary, R Gendrin, A Korth, G Kremser and D Jones, J. Geophys. Res. 86, 6755 (1981)

    Article  ADS  Google Scholar 

  29. A Roux, S Perraut, J L Rauch, C de Villedary, G Kremser, A Korth and D T Young, J. Geophys. Res. 87, 8174 (1982)

    Article  ADS  Google Scholar 

  30. C A Cattell, F S Mozer, I Roth, R R Anderson, R C Elphic, W Lennartsson and E Ungstrup, J. Geophys. Res. 96, 11421 (1991)

    Article  ADS  Google Scholar 

  31. M André, H Koskinen, G Gustafsson and R Lundin, Geophys. Res. Lett. 14, 463 (1987)

    Article  ADS  Google Scholar 

  32. F S Mozer, R Ergun, M Temerin, C Cattell, J Dombeck and J Wygant, Phys. Rev. Lett. 79(7), 1281 (1997)

    Article  ADS  Google Scholar 

  33. C Cattell, R Bergmann, K Sigsbee, C Carlson, C Chaston, R Ergun, J McFadden, F S Mozer, M Temerin, R Strangeway, R Elphic, L Kistler, E Moebius, L Tang, D Klumpar and R Pfaff, Geophys. Res. Lett. 25, 2053 (1998)

    Article  ADS  Google Scholar 

  34. X Tang, C Cattell, R Lysak, L B Wilson, L Dai and S Thaller, J. Geophys. Res. 120, 3380 (2015)

    Article  Google Scholar 

  35. D R Dakin, T Tajima, G Benford and N Rynn, J. Plasma Phys. 15, 175 (1976)

    Article  ADS  Google Scholar 

  36. E Ungstrup, D M Klumpar and W J Heikkila, J. Geophys. Res. 84, 4289 (1979)

    Article  ADS  Google Scholar 

  37. R D Sharp, R G Johnson and E G Shelly, J. Geophys. Res. 79, 5167 (1974)

    Article  ADS  Google Scholar 

  38. T Sreeraj, S V Singh and G S Lakhina, Phys. Plasmas 23(8), 082901 (2016)

    Article  ADS  Google Scholar 

  39. T Sreeraj, S V Singh and G S Lakhina, Phys. Plasmas 25(5), 052902 (2018)

    Article  ADS  Google Scholar 

  40. H Okuda, C Z Cheng and W W Lee, Phys. Fluids 24, 1060 (1981)

    Article  ADS  Google Scholar 

  41. M Backrud-Ivgren, G Stenberg, M André, M Morooka, Y Hobara, S Joko, K Rönnmark, N Cornilleau-Wehrlin, A Fazakerley, A Rème, H Fazakerley and H Rème, Ann. Geophys. 23, 3739 (2005)

    Article  ADS  Google Scholar 

  42. J L Horwitz, Rev. Geophys. 20(4), 929 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  43. L A Frank, K L Ackerson and D M Yeager, J. Geophys. Res. 82(1), 129 (1977)

    Article  ADS  Google Scholar 

  44. D M Suszcynsky, N D’Angelo and R L Merlino, J. Geophys. Res. 94, 8966 (1989)

    Article  ADS  Google Scholar 

  45. V V Gavrishchaka, G I Ganguli, W A Scales, S P Slinker, C C Chaston, J P McFadden, R E Ergun and C W Carlson, Phys. Rev. Lett. 85, 4285 (2000)

    Article  ADS  Google Scholar 

  46. S Hinata, Astrophys. J. 235, 258 (1980)

    Article  ADS  Google Scholar 

  47. A Luhn, Adv. Space Res. 4(2–3), 165 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

GSL thanks the Indian National Science Academy, New Delhi for support under the INSA Honorary Scientist Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Sreeraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreeraj, T., Singh, S.V. & Lakhina, G.S. Higher harmonic instability of electrostatic ion cyclotron waves. Pramana - J Phys 92, 78 (2019). https://doi.org/10.1007/s12043-019-1740-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1740-4

Keywords

PACS Nos

Navigation