, 92:78 | Cite as

Higher harmonic instability of electrostatic ion cyclotron waves

  • T SreerajEmail author
  • S V Singh
  • G S Lakhina


Electrostatic ion cyclotron instability pertaining to the higher harmonics of proton and helium cyclotron modes is investigated in three-component magnetised plasma consisting of beam electrons, protons and doubly charged helium ions. The effect of different plasma parameters, namely, angle of propagation, number density and temperature of helium ions and electron beam speed, has been studied on the growth of proton and helium cyclotron harmonics. It is found that an increase in angle of propagation leads to the excitation of fewer harmonics of proton cyclotron waves with decreased growth rates and higher number of helium harmonics with decreased growth rates. Also, largely odd helium harmonics are excited, except for one particular case where the second harmonic also becomes unstable. The number density and temperature of ions have significant effect on the helium cyclotron instability compared to the proton cyclotron instability. Further, as the speed of electron beam is increased, the peak growth rate increases. Our results are relevant to laboratory and space plasmas where field-aligned currents exist.


Electrostatic ion cyclotron instability space plasma ionosphere kinetic theory 


52.25.Dg 52.25.Xz 52.35.−g 52.35.Fp 



GSL thanks the Indian National Science Academy, New Delhi for support under the INSA Honorary Scientist Scheme.


  1. 1.
    N D’Angelo and R W Motley, Phys. Fluids 5, 633 (1962)ADSCrossRefGoogle Scholar
  2. 2.
    R W Motley and N D’Angelo, Phys. Fluids 6, 296 (1963)ADSCrossRefGoogle Scholar
  3. 3.
    W E Drummond and M N Rosenbluth, Phys. Fluids 5, 1507 (1962)ADSCrossRefGoogle Scholar
  4. 4.
    E S Weibel, Phys. Fluids 13, 3003 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    J M Kindel and C F Kennel, J. Geophys. Res. 76, 3055 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    K F Lee, J. Plasma Phys. 8, 379 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    F W Perkins, Phys. Fluids 19, 1012 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    M Yamada, S Seiler, H W Hendel and H Ikezi, Phys. Fluids 20, 450 (1977)ADSCrossRefGoogle Scholar
  9. 9.
    P M Kintner, M C Kelley, R D Sharp, A G Ghielmetti, M Temerin, C Cattell, P F Mizera and J F Fennell,J. Geophys. Res. 84, 7201 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    C Cattell, J. Geophys. Res. 86, 3641 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    H Okuda and K-I Nishikawa, J. Geophys. Res. 89, 1023 (1984)ADSCrossRefGoogle Scholar
  12. 12.
    G S Lakhina, J. Geophys. Res. 92, 12161 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    G Ganguli, S Slinker, V Gavrishchaka and W Scales, Phys. Plasmas 9, 2321 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    M J Kurian, S Jyothi, S K Leju, M Isaac, C Venugopal and G Renuka, Pramana – J. Phys. 73, 1111 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    M Barati Moqadam Niyat, S M Khorashadizadeh and A R Niknam, Phys. Plasmas 23, 122110 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    B Song, D Suszcynsky, N D’Angelo and R L Merlino, Phys. Fluids B 1, 2316 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    C Venugopal, P J Kurian and G Renuka, Pramana – J. Phys. 37(3), 303 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    A Barkan, N D’Angelo and R L Merlino, Planet. Space Sci. 43, 905 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    V W Chow and M Rosenberg, Planet. Space Sci. 43, 613 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    V W Chow and M Rosenberg, Phys. Plasmas 3, 1202 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    S-H Kim, J R Heinrich and R L Merlino, Planet. Space Sci. 56, 1552 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    M Rosenberg and R L Merlino, J. Plasma Phys. 75, 495 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    J Sharma, S C Sharma, V K Jain and A Gahlot, J. Plasma Phys. 79, 577 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    A K Chattopadhyay, S V Kulkarni and R Srinivasan, Pramana – J. Phys. 85(4), 713 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    S R Mosier and D A Gurnett, Nature 223, 605 (1969)ADSCrossRefGoogle Scholar
  26. 26.
    P M Kintner, M C Kelley and F S Mozer, Geophys. Res. Lett. 5, 139 (1978)ADSCrossRefGoogle Scholar
  27. 27.
    M Temerin, M Woldorff and F S Mozer, Phys. Rev. Lett. 43, 1941 (1979)ADSCrossRefGoogle Scholar
  28. 28.
    D T Young, S Perraut, A Roux, C de Villedary, R Gendrin, A Korth, G Kremser and D Jones, J. Geophys. Res. 86, 6755 (1981)ADSCrossRefGoogle Scholar
  29. 29.
    A Roux, S Perraut, J L Rauch, C de Villedary, G Kremser, A Korth and D T Young, J. Geophys. Res. 87, 8174 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    C A Cattell, F S Mozer, I Roth, R R Anderson, R C Elphic, W Lennartsson and E Ungstrup, J. Geophys. Res. 96, 11421 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    M André, H Koskinen, G Gustafsson and R Lundin, Geophys. Res. Lett. 14, 463 (1987)ADSCrossRefGoogle Scholar
  32. 32.
    F S Mozer, R Ergun, M Temerin, C Cattell, J Dombeck and J Wygant, Phys. Rev. Lett. 79(7), 1281 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    C Cattell, R Bergmann, K Sigsbee, C Carlson, C Chaston, R Ergun, J McFadden, F S Mozer, M Temerin, R Strangeway, R Elphic, L Kistler, E Moebius, L Tang, D Klumpar and R Pfaff, Geophys. Res. Lett. 25, 2053 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    X Tang, C Cattell, R Lysak, L B Wilson, L Dai and S Thaller, J. Geophys. Res. 120, 3380 (2015)CrossRefGoogle Scholar
  35. 35.
    D R Dakin, T Tajima, G Benford and N Rynn, J. Plasma Phys. 15, 175 (1976)ADSCrossRefGoogle Scholar
  36. 36.
    E Ungstrup, D M Klumpar and W J Heikkila, J. Geophys. Res. 84, 4289 (1979)ADSCrossRefGoogle Scholar
  37. 37.
    R D Sharp, R G Johnson and E G Shelly, J. Geophys. Res. 79, 5167 (1974)ADSCrossRefGoogle Scholar
  38. 38.
    T Sreeraj, S V Singh and G S Lakhina, Phys. Plasmas 23(8), 082901 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    T Sreeraj, S V Singh and G S Lakhina, Phys. Plasmas 25(5), 052902 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    H Okuda, C Z Cheng and W W Lee, Phys. Fluids 24, 1060 (1981)ADSCrossRefGoogle Scholar
  41. 41.
    M Backrud-Ivgren, G Stenberg, M André, M Morooka, Y Hobara, S Joko, K Rönnmark, N Cornilleau-Wehrlin, A Fazakerley, A Rème, H Fazakerley and H Rème, Ann. Geophys. 23, 3739 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    J L Horwitz, Rev. Geophys. 20(4), 929 (1982)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    L A Frank, K L Ackerson and D M Yeager, J. Geophys. Res. 82(1), 129 (1977)ADSCrossRefGoogle Scholar
  44. 44.
    D M Suszcynsky, N D’Angelo and R L Merlino, J. Geophys. Res. 94, 8966 (1989)ADSCrossRefGoogle Scholar
  45. 45.
    V V Gavrishchaka, G I Ganguli, W A Scales, S P Slinker, C C Chaston, J P McFadden, R E Ergun and C W Carlson, Phys. Rev. Lett. 85, 4285 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    S Hinata, Astrophys. J. 235, 258 (1980)ADSCrossRefGoogle Scholar
  47. 47.
    A Luhn, Adv. Space Res. 4(2–3), 165 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Indian Institute of GeomagnetismNavi MumbaiIndia

Personalised recommendations