Skip to main content
Log in

Magnetohydrodynamic mixed convective flow of an upper convected Maxwell fluid through variably permeable dilating channel with Soret effect

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The effects of Soret and variable porosity on an unsteady magnetohydrodynamic flow of an upper convected Maxwell fluid through an expanding or contracting channel are explored in this article. The temperature and concentration at the walls are maintained at different values. The gravitational forces arising from temperature and concentration gradients are also considered. The behaviour of velocity components, skin friction, temperature and concentration with respect to various non-dimensional parameters has been numerically computed by using an efficient shooting method. Newtonian case has been studied using the current algorithm and the present results are compared with earlier literature. At the boundaries, the heat and mass transfer rates are studied using local Nusselt and Sherwood numbers. The results show that both the variable permeability and wall expansion have dominant effects on skin friction at the plates. The Prandtl and Soret numbers have dominating effect on mass transfer when compared with variable permeable parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J G Oldroyd, Proc. R. Soc. London A 200, 523 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  2. C Ruan and J Ouyang, Chin. J. Chem. Eng. 18(2), 177 (2010)

    Article  Google Scholar 

  3. S Dhinakaran, A M Afonso, M A Alves and F T Pinho, J. Colloid Interface Sci. 344(2), 513 (2010)

    Article  ADS  Google Scholar 

  4. K Satish, V Průša and K R Rajagopal, Int. J. Non-Linear Mech46(6), 819 (2011)

    Article  Google Scholar 

  5. T Hayat and N Ali, Physica A 370(2), 225 (2006)

    Article  ADS  Google Scholar 

  6. O Prakash, D Kumar and Y K Dwivedi, Pramana – J. Phys. 79(6), 1457 (2012)

    Article  ADS  Google Scholar 

  7. A A Afify and M A El-Aziz, Pramana – J. Phys. 88(2): 31 (2017)

    Article  ADS  Google Scholar 

  8. N Sandeep and M Gnaneswara Reddy, Eur. Phys. J. Plus 132(3), 147 (2017)

    Article  Google Scholar 

  9. S Middleman, Fundamentals of polymer processing (McGraw-Hill College, 1977)

  10. A Alizadeh-Pahlavan and K Sadeghy, Commun. Nonlinear Sci. Numer. Simulat. 14(4), 1355 (2009)

    Article  ADS  Google Scholar 

  11. T Hayat and M Awais, Int. J. Numer. Methods Fluids 66(7), 875 (2011)

    Article  ADS  Google Scholar 

  12. M Nandeppanavar Mahantesh, K Vajravelu and M Subhas Abel, Commun. Nonlinear Sci. Numer. Simulat. 16(9), 3578 (2011)

    Article  ADS  Google Scholar 

  13. M Jayachandra Babu and N Sandeep, J. Mol. Liq. 232, 27 (2017)

    Article  Google Scholar 

  14. S Mukhopadhyay, Chin. Phys. Lett. 29(5), 054703 (2012)

    Article  Google Scholar 

  15. J J Choi, Z Rusak and J A Tichy, J. Non-Newtonian Fluid Mech. 85(2), 165 (1999)

    Article  Google Scholar 

  16. A S Berman, J. Appl. Phys. 24(9), 1232 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  17. T Hayat and Z Abbas, Z. Angew. Math. Phys. 59(1), 124 (2008)

    Article  MathSciNet  Google Scholar 

  18. N Nithyadevi, P Gayathri and N Sandeep, Int. J. Mech. Sci. 131, 827 (2017)

    Article  Google Scholar 

  19. N Sandeep and M Gnaneswara Reddy, J. Mol. Liq. 225, 87 (2017)

    Article  Google Scholar 

  20. T Hayat, M Waqas, S A Shehzad and A Alsaedi, Pramana – J. Phys. 86(1), 3 (2016)

    Article  ADS  Google Scholar 

  21. P M Krishna, N Sandeep and R P Sharma, Eur. Phys. J. Plus 132(5), 202 (2017)

    Article  Google Scholar 

  22. M Abbasi, M Khaki, A Rahbari, D D Ganji and I Rahimipetroudi, J. Braz. Soc. Mech. Sci. Eng. 38(3), 977 (2016)

    Article  Google Scholar 

  23. E H Wissler, Ind. Eng. Chem. Fundam. 10(3), 411 (1971)

    Article  Google Scholar 

  24. D F James and D R McLaren, J. Fluid Mech. 70, 733 (1975)

    Article  ADS  Google Scholar 

  25. J A Deiber and W R Schowalter, AlChE J. 27(6), 912 (1981)

    Article  Google Scholar 

  26. F Durst, W Haas and W Interthal, J. Non-Newtonian Fluid Mech. 22(2), 169 (1987)

    Article  Google Scholar 

  27. K K Talwar and B Khomami, J. Rheol. 36(7), 1377 (1992)

    Article  ADS  Google Scholar 

  28. W Tan and T Masuoka, Phys. Fluids 17, 23 (2005)

    Article  Google Scholar 

  29. J Savins, Ind. Eng. Chem. 61(10), 18 (1969)

    Article  Google Scholar 

  30. M L De Haro, J A P Del Río and S Whitaker, Transp. Porous Med. 25(2), 167 (1996)

    Article  Google Scholar 

  31. O A Bég and O D Makinde, J. Petroleum Sci. Eng. 76, 93 (2011)

    Article  Google Scholar 

  32. H N Chang, J S Ha, J K Park, I H Kim and H D Shin, J. Biomech. 22, 1257 (1989)

    Article  Google Scholar 

  33. C F J Dewey, S R Bussolari, M A J Gimbrone and P F Davis, J. Biomech. Eng. 103, 177 (1981)

    Article  Google Scholar 

  34. J M Drazen, R D Kamm and A S Slutsky, Physiol. Rev. 64, 505 (1984)

    Article  Google Scholar 

  35. Y C Fung and C S Yih, J. Appl. Mech. 35, 669 (1968)

    Article  ADS  Google Scholar 

  36. M Goto and S Uchida, Proceedings of the 40th Japan National Congress on Applied Mechanics (NCTAM-40) (1990) p. 163

  37. M J Levesque and R M Nerem, J. Biomech. Eng. 107, 341 (1985)

    Article  Google Scholar 

  38. S Uchida and H Aoki, J. Fluid Mech. 82, 371 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  39. C Y Wang, ASME Trans. J. Appl. Mech. 38, 553 (1971)

    Article  ADS  Google Scholar 

  40. G Sucharitha, P Lakshminarayana and N Sandeep, Int. J. Mech. Sci. 131, 52 (2017)

    Article  Google Scholar 

  41. J Majdalani, C Zhou and C A Dawson, J. Biomech. 35(10), 1399 (2002)

    Article  Google Scholar 

  42. J Majdalani and C Zhou, Zeitschrift für Angewandte Mathematik und Mechanik 83, 181 (2003)

    Article  ADS  Google Scholar 

  43. Y Z Boutros, M B Abd-el-Malek, N A Badran and H S Hassan, Appl. Math. Model. 31(6), 1092 (2007)

    Article  Google Scholar 

  44. S Asghar, M Mushtaq and A Kara, Appl. Math. Model. 32(12), 2936 (2008)

    Article  MathSciNet  Google Scholar 

  45. S Asghar, M Mushtaq and T Hayat, Nonlinear Anal. Real World Appl. 11(1), 555 (2010)

    Article  MathSciNet  Google Scholar 

  46. D Srinivasacharya, N Srinivasacharyulu and O Odelu, Int. Commun. Heat Mass Transfer 36(2), 180 (2009)

    Article  Google Scholar 

  47. S Xinhui, Z Liancun, C Xuehui, Z Xinxin, C Limei and L Min, Comput. Methods Biomech. Biomed. Eng. 17(4), 423 (2014)

    Article  Google Scholar 

  48. X Si, L Zheng, X Zhang, X Si and M Li, Comput. Methods Biomech. Biomed. Eng. 17(6), 623 (2014)

    Article  Google Scholar 

  49. Y Wang, T Hayat, N Ali and M Oberlack, Physica A 387(2–3), 347 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Vice Chancellor of Defence Institute of Advanced Technology (Deemed University) for his support in the current research. One of the authors (KPK) is grateful to the University Grants Commission, Government of India for providing Senior Research Fellowship (F.2-18 / 2012(SA-I)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odelu Ojjela.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, K.P., Ojjela, O. & Das, S.K. Magnetohydrodynamic mixed convective flow of an upper convected Maxwell fluid through variably permeable dilating channel with Soret effect. Pramana - J Phys 92, 73 (2019). https://doi.org/10.1007/s12043-019-1732-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1732-4

Keywords

PACS Nos

Navigation