Skip to main content
Log in

A modified efficiency centrality to identify influential nodes in weighted networks

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

It is still a crucial issue to identify influential nodes effectively in the study of complex networks. As for the existing efficiency centrality (EffC), it cannot be applied to a weighted network. In this paper, a modified efficiency centrality (EffC\(^\mathrm{m}\)) is proposed by extending EffC into weighted networks. The proposed measure trades off the node degree and global structure in a weighted network. The influence of both the sum of the average degree of nodes in the whole network and the average distance of the network is taken into account. Numerical examples are used to illustrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S H Strogatz, Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  2. M E J Newman, SIAM Rev. 45(2), 167 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. E E Schadt, Nature 461(7261), 218 (2009)

    Article  ADS  Google Scholar 

  4. Y Yang, G Xie and J Xie, Dis. Dyn. Nat. Soc. 2017, 1 (2017)

    Google Scholar 

  5. S Wang, Pramana – J. Phys. 90(2): 25 (2018)

    Article  ADS  Google Scholar 

  6. F Nian and W Liu, Pramana – J. Phys. 86(6), 1209 (2016)

    Article  ADS  Google Scholar 

  7. Y C Lai, A Motter, T Nishikawa, K Park and L Zhao, Pramana – J. Phys. 64(4), 483 (2005)

    Article  ADS  Google Scholar 

  8. H E Ping, C G Jing, C Z Chen, T Fan and H S Nik, PramanaJ. Phys. 82(3), 499 (2014)

    Article  ADS  Google Scholar 

  9. D R Amancio, Europhys. Lett.  114(5), 58005 (2016)

    Article  ADS  Google Scholar 

  10. D R Amancio, PLoS ONE 10(8), e0136076 (2015)

  11. Y Han and Y Deng, J. Ambient Intell. Humaniz. Comput. 9(6), 1933 (2018)

    Article  Google Scholar 

  12. L Fei, Q Zhang and Y Deng, Physica A 512, 1044 (2018)

    Article  ADS  Google Scholar 

  13. T Zhou, G Yan and B-H Wang, Phys. Rev. E 71(4), 046141 (2005)

    Article  ADS  Google Scholar 

  14. M Kitsak, L K Gallos, S Havlin, F Liljeros, L Muchnik, H E Stanley and H A Makse, Nat. Phys. 6(11), 888 (2010)

    Article  Google Scholar 

  15. D R Amancio, M G V Nunes, O N Oliveira Jr., T A S Pardo, L Antiqueira and L Da F Costa, Phys. A: Stat. Mech. Appl. 390(1), 131 (2011)

  16. Z Cheng, H T Zhang, M Z Q Chen, T Zhou and N V Valeyev, PLoS ONE 6(7), e22123 (2011)

    Article  ADS  Google Scholar 

  17. D R Amancio, PLoS ONE 10(2), e0118394 (2015)

    Article  Google Scholar 

  18. D R Amancio, Scientometrics 105(3), 1763 (2015)

  19. D R Amancio, O N Oliveira Jr and L Da F Costa, New J. Phys. 14(21), 1759 (2012)

  20. F N Silva, D R Amancio, M Bardosova, L Da F Costa and O N Oliveira Jr, J. Informetr. 10(2), 487 (2016)

  21. A Zeng, Z Shen, J Zhou, J Wu, Y Fan, Y Wang and H E Stanley, Phys. Rep. 714–715, 1 (2017)

  22. M P Viana, D R Amancio and L Da F Costa, J. Informetr. 7(2), 371 (2013)

  23. V Nicosia, R Criado, M Romance, G Russo and V Latora, Sci. Rep. 2, 218 (2012)

    Article  ADS  Google Scholar 

  24. T Opsahl, F Agneessens and J Skvoretz, Soc. Netw. 32(3), 245 (2010)

    Article  Google Scholar 

  25. L C Freeman, Soc. Netw. 1(3), 215 (1978)

    Article  Google Scholar 

  26. D Chen, L Lü, M S Shang, Y C Zhang and T Zhou, Phys. A: Stat. Mech. Appl. 391(4), 1777 (2012)

    Article  Google Scholar 

  27. P Bonacich and P Lloyd, Soc. Netw. 23(3), 191 (2001)

    Article  Google Scholar 

  28. L Katz, Psychometrika 18(1), 39 (1953)

    Article  Google Scholar 

  29. S Brin and L Page, Comput. Netw. ISDN Syst. 30, 107 (1998)

    Article  Google Scholar 

  30. L Lü, Y C Zhang, H Y Chi and Z Tao, PLoS ONE 6(6), e21202 (2011)

    Article  ADS  Google Scholar 

  31. T Bian and Y Deng, Chaos 28, 043109 (2018), https://doi.org/10.1063/1.5030894

  32. G Bagler, Physica A 387(12), 2972 (2008)

    Article  ADS  Google Scholar 

  33. R Zhang, B Ashuri and Y Deng, Adv. Data Anal. Classif. 11(4), 759 (2017)

    Article  MathSciNet  Google Scholar 

  34. L Yin and Y Deng, Physica A 498, 102 (2018)

    Article  Google Scholar 

  35. L Yin and Y Deng, Physica A 508, 176 (2018)

    Article  Google Scholar 

  36. Y Li and Y Deng, Int. J. Comput. Commun. Control 13(5), 771 (2018)

    Article  Google Scholar 

  37. Y Han and Y Deng, Soft Comput. 22(15), 5073 (2018)

    Article  Google Scholar 

  38. H Mo and Y Deng, Int. J. Fuzzy Syst. 20(8), 2458 (2018), https://doi.org/10.1007/s40815-018-0514-3

  39. H Xu and Y Deng, IEEE Access 6(1), 11634 (2018)

    Article  Google Scholar 

  40. W Deng, X Lu and Y Deng, Math. Probl. Eng. 2018, 1 (2018)

  41. T Bian, H Zheng, L Yin and Y Deng, Qual. Reliab. Eng. Int. 34, 501 (2018)

    Article  Google Scholar 

  42. H Zheng and Y Deng, Int. J. Intell. Syst. 33(7), 1343 (2018)

    Article  Google Scholar 

  43. S Wang, Y Du and Y Deng, Commun. Nonlinear Sci. Numer. Simul. 47, 151 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  44. T Zhu, S P Zhang, R X Guo and G C Chang, Syst. Eng. Electron. 31(8), 1902 (2009)

    Google Scholar 

  45. M Li, Q Zhang and Y Deng, Chaos Solitons Fractals 117, 283 (2018), https://doi.org/10.1016/j.chaos.2018.04.033

  46. B Kang, G Chhipi-Shrestha, Y Deng, K Hewage and R Sadiq, Appl. Math. Comput. 324, 202 (2018)

    MathSciNet  Google Scholar 

  47. B Kang, Y Deng, K Hewage and R Sadiq, Int. J. Intell. Syst. 33(8), 1745 (2018)

    Article  Google Scholar 

  48. M Kaiser and C C Hilgetag, Phys. Rev. E 69(2), 036103 (2004)

    Article  ADS  Google Scholar 

  49. M E J Newman, Proc. Natl. Acad. Sci. 98(2), 404 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  50. D J Watts and S H Strogatz, Nature 393(6684), 440 (1998)

  51. M E Newman, Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  ADS  Google Scholar 

  52. L J Allen, Math. Biosci. 124(1), 83 (1994)

    Article  MathSciNet  Google Scholar 

  53. Z Yang and T Zhou, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(2), 056106 (2012)

  54. W Yan, T Zhou, J Wang, Z Fu and B Wang, Chin. Phys. Lett. 22(2), 510 (2004)

    ADS  Google Scholar 

  55. Z Wang, M A Andrews, Z-X Wu, L Wang and C T Bauch, Phys. Life Rev. 15, 1 (2015)

    Article  ADS  Google Scholar 

  56. Z Wang, C T Bauch, S Bhattacharyya, A d’Onofrio, P Manfredi, M Perc, N Perra, M Salathé and D Zhao, Phys. Rep. 664, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  57. L Lü, D Chen, X-L Ren, Q-M Zhang, Y-C Zhang and T Zhou, Phys. Rep. 650, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  58. Z Wang, Y Moreno, S Boccaletti and M Perc, Chaos Solitons Fractals 103, 177 (2017)

  59. F Rakowski, M Gruziel, Ł Bieniasz-Krzywiec and J P Radomski, Physica A 389(16), 3149 (2010)

  60. R W Floyd, Commun. ACM 5(6), 345 (1962)

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the reviewers’ suggestions and the editor’s encouragement. The work was partially supported by the National Natural Science Foundation of China (Grant Nos 61573290, 61503237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, S. & Deng, Y. A modified efficiency centrality to identify influential nodes in weighted networks. Pramana - J Phys 92, 68 (2019). https://doi.org/10.1007/s12043-019-1727-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1727-1

Keywords

PACS No

Navigation