Skip to main content
Log in

Numerical solution of regularised long ocean waves using periodised scaling functions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, a numerical technique for solving the regularised long wave equation (RLW) is presented using a wavelet Galerkin (WG) method in space and a fourth-order Runge–Kutta (RK) technique in time. We study the convergence analysis of the obtained numerical solutions and investigate the results for the motions of double and single solitary waves, undular bores and conservation properties of mass, energy and momentum in order to verify the applicability and performance of the proposed method. Simulation results are further compared with the known analytical solutions and some previous published numerical results. It is concluded that the present method remarkably improves the accuracy of the Galerkin-based methods for numerically solving a large class of nonlinear and weakly dispersive ocean waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D H Peregrine, J. Fluid Mech. 25, 321 (1966)

    Article  ADS  Google Scholar 

  2. T B Benjamin, J L Bona and J J Mahony, Philos. Trans. R. Soc. Lond. A 272(1220), 47 (1972)

    Article  ADS  Google Scholar 

  3. Kh Abdulloev, H Bogalubsky and V G Markhankov, J. Phys. Lett. A 56, 427 (1976)

    Article  ADS  Google Scholar 

  4. M Wadati, J. Phys. Lett. A 57(5–6), 841 (2001)

  5. J C Eilbeck and G R McGuire, J. Comput. Phys. 19, 43 (1975)

    Article  ADS  Google Scholar 

  6. J L Bona and A Soyeur, J. Nonlinear Sci. 4, 49 (1994)

  7. K R Raslan, J. Appl. Math. Comput. 168, 795 (2005)

    Article  MathSciNet  Google Scholar 

  8. L R T Gardner, G A Gardner and A Dogan, Commun. Numer. Methods Eng. 12, 795 (1996)

    Article  Google Scholar 

  9. D M Sloan, J. Comput. Appl. Math. 36(2), 159 (1991)

    Article  MathSciNet  Google Scholar 

  10. A Araujo and A Duran, J. Appl. Numer. Math. 36, 197 (2001)

    Article  Google Scholar 

  11. A Duran and M A Lopez-Marcos, J. Phys. 36(28), 7761 (2003)

    ADS  MathSciNet  Google Scholar 

  12. L R T Gardner and G A Gardner, J. Comput. Phys. 91, 441 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  13. Z Luo and R Liu, SIAM J. Numer. Anal. 36, 89 (1998)

    Article  Google Scholar 

  14. P C Jain, R Shankar and T V Singh, Commun. Numer. Methods Eng. 9, 579 (1993)

    Article  Google Scholar 

  15. S I Zaki, J. Comput. Phys. Commun. 138, 80 (2001)

    Article  ADS  Google Scholar 

  16. I Dag, B Saka and D Irk, J. Comput. Appl. Math. 190, 532 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ö Oruç, F Bulut and A Esen, Mediterr. J. Math. 13(5), 3235 (2016)

    Article  MathSciNet  Google Scholar 

  18. Ö Oruç, F Bulut and A Esen, Pramana – J. Phys. 87(6): 94 (2016)

  19. M Bakhoday-Paskyabi, Wave Motion 73, 24 (2017)

    Article  MathSciNet  Google Scholar 

  20. J Hozman and J Lamac, Bound. Value Probl. 2013, 1 (2013)

    Article  Google Scholar 

  21. X Kang, K Cheng and C Guo, Adv. Diff. Equ. 339, 1 (2015)

    Google Scholar 

  22. I Daubechies, Commun. Pure Appl. Math. 41(7), 909 (1988)

    Article  MathSciNet  Google Scholar 

  23. I Daubechies, Ten lectures on wavelets (SIAM, Philadelphia, 1992)

    Book  Google Scholar 

  24. T Kremp and W Freude, J. Ligthwave Technol. 23, 1491 (2005)

    Article  ADS  Google Scholar 

  25. M Bakhoday-Paskyabi and F Rashidi, WSEAS Trans. Math. 4, 204 (2005)

    MathSciNet  Google Scholar 

  26. D Antonopoulos, V Dougalis and D Mitsotakis, SIAM J. Numer. Anal. 55(2), 841 2017

    Article  MathSciNet  Google Scholar 

  27. V Thomee and B Wendroff, SIAM J. Numer. Anal. 11, 1039 (1974)

    Article  Google Scholar 

  28. D Liang, Q Guo and S Gong, Commun. Comput. Phys. 6, 109 (2009)

    Article  MathSciNet  Google Scholar 

  29. A Doğan, J. Appl. Math. Model. 26, 771 (2002)

    Article  Google Scholar 

  30. L R T Gardner, G A Gardner and I Dag, Commun. Numer. Methods Eng. 11, 59 (1995)

    Article  Google Scholar 

  31. A Doğan, Commun. Numer. Methods Eng. 17, 485 (2001)

    Article  Google Scholar 

  32. K R Raslan, J. Appl. Math. Comput. 167, 1101 (2005)

    Article  MathSciNet  Google Scholar 

  33. L R T Gardner, G A Gardner, F A Ayoub and N K Amein, Comput. Methods Appl. Mech. Eng. 147(1–2), 147 (1997)

    Article  ADS  Google Scholar 

  34. B Saka and İ Dag, Numer. Methods Partial Diff. Eqs. 23(3), 731 (2007)

    Article  Google Scholar 

  35. A Esen and S Kutluay, Appl. Math. Comput. 174(2), 833 (2006)

    MathSciNet  Google Scholar 

  36. İ. Dag, A Doğan and B Saka, Int. J. Comput. Math. 80(6), 743 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Bakhoday-Paskyabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhoday-Paskyabi, M., Valinejad, A. & Azodi, H.D. Numerical solution of regularised long ocean waves using periodised scaling functions. Pramana - J Phys 92, 71 (2019). https://doi.org/10.1007/s12043-019-1726-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1726-2

Keywords

PACS Nos

Navigation