Skip to main content
Log in

Non-planar electron-acoustic waves with hybrid Cairns–Tsallis distribution

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Non-planar electron-acoustic waves having Cairns–Tsallis distributed hot electrons are investigated under multiple temperature electrons model in unmagnetised plasma. In this model, Korteweg–de Vries (KdV) equation is obtained in the cylindrical / spherical coordinates. On the basis of the solutions of KdV equation, variation of solitary wave features (amplitude, velocity and width) with different plasma parameters are analysed. Dispersion and nonlinear coefficients obtained depend on the particle density \(\alpha \), non-extensive parameter q, electron temperature ratio \(\theta \) and non-thermal parameter \(\gamma \). Combined effect of all these plasma parameters significantly changes the properties of the solitary waves in non-planar geometry. It is observed that increasing the number of non-thermal electrons in the medium increases the amplitude, velocity as well as width of the non-planar waves whereas with the increase in temperature, the velocity of waves decreases and this impact is dominant in spherical waves. This two-parameter \((\gamma , q)\) distribution model (C–T) is applicable to a wide range of observed plasmas, i.e. auroral region and magnetosphere of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K Watanabe and T Taniuti, J. Phys. Soc. Jpn  43, 1819 (1977)

    Article  ADS  Google Scholar 

  2. M Y Yu and P K Shukla, Phys. Plasmas  29, 1409 (1983)

    Google Scholar 

  3. R L Tokar and S P Gary, Geophys. Res. Lett.  11, 1180 (1984)

    Article  ADS  Google Scholar 

  4. S P Gary and R L Tokar, Phys. Fluids  28, 2439(1985)

    Article  ADS  Google Scholar 

  5. R L Mace and M A Helberg, Phys. Plasmas  43, 239 (1990)

    Article  Google Scholar 

  6. W C Feldman et alGeophys. Res. Lett.  88, 15 (1983)

    Google Scholar 

  7. S D Bale, P J Kellogg, D E Larson, R P Lin, K Goetz and R P Lepping, Geophys. Res. Lett.  25, 2929 (1983)

    Article  ADS  Google Scholar 

  8. G S Lakhina, S V Singh, A P Kakad, F Verheest and R Bharuthram, Nonlinear Process. Geophys.  15, 903 (2008)

  9. S V Singh and G S Lakhina, Planet. Space Sci.  49, 107 (2001)

    Article  ADS  Google Scholar 

  10. D Schriver and M Ashour-Abdalla, Geophys. Res. Lett.  16, 8 (1989)

    Article  Google Scholar 

  11. N Dubouloz, R Pottelete, M Malingre and R A Treumann, Geophys. Res. Lett.  18, 155 (1991)

    Article  ADS  Google Scholar 

  12. N Dubouloz, R A Treumann, R Pottelete and M Malingre, Geophys. Res. Lett.  98, 17 (1993)

    Article  Google Scholar 

  13. R L Mace, S Baboolal, R Bharuthram and M A Hellberg, J. Plasma Phys.  45, 323 (1991)

  14. R L Mace and M A Helberg, Phys. Plasmas  8, 2649 (2001)

    Article  ADS  Google Scholar 

  15. R A Cairns, A A Mamun, R Bingham, R Bostrom, R O Dendy, C M C Nairn and P K Shukla, Geophys. Rev. Lett.  22, 2709 (1995)

    Article  ADS  Google Scholar 

  16. R A Cairns, R Bingham, R O Dendy, C M C Nairn, P K Shukla and A A Mamun, J. Geophys. Res.  5, C6-4 (1995)

  17. C Tsallis, J. Stat. Phys.  52, 479 (1988)

    Article  ADS  Google Scholar 

  18. F Satin, Phys. Scr.  71, 443 (2005)

    Article  ADS  Google Scholar 

  19. M Tribeche, L Djebarni and R Amour, Phys. Plasmas  17, 042114 (2010)

    Article  ADS  Google Scholar 

  20. R Amour and M Tribeche, Phys. Plasmas  17, 063702 (2010)

    Article  ADS  Google Scholar 

  21. A S Bains, M Tribeche and T S Gill, Phys. Plasmas  18, 022108 (2011)

    Article  ADS  Google Scholar 

  22. M Shahmansouri and H Alinejad, Astrophys. Space Sci.  344, 463 (2013)

    Article  ADS  Google Scholar 

  23. U Abdelsalam, F Allehiany, W M Moslem and S K El-Labany, Pramana – J. Phys.  86, 3 (2015)

    Google Scholar 

  24. M Tribeche, R Amour and P K Shukla, Phys. Rev. E  85, 037401 (2012)

    Article  ADS  Google Scholar 

  25. R Amour, M Tribeche and P K Shukla, Astrophys. Space Sci.  338, 287 (2012)

    Article  ADS  Google Scholar 

  26. G Williams, I Kourakis, F Verheest and M A Hellberg, Phys. Rev. E  88, 023103 (2013)

    Article  ADS  Google Scholar 

  27. O Bouzit, L A Gougam and M Tribeche, Phys. Plasmas  21, 062101 (2014)

    Article  ADS  Google Scholar 

  28. A A Abid, M Z Khan, S I Yap, H Tercas and S Mahmood, Phys. Plasmas  23, 013706 (2016)

    Article  ADS  Google Scholar 

  29. P Bala, T S Gill, A S Bains and H Kaur, Indian J. Phys.  91, 1625 (2017)

    Article  ADS  Google Scholar 

  30. A Merriche and M Tribeche, Ann. Phys.  376, 436 (2017)

    Article  ADS  Google Scholar 

  31. B Sahu and R Roychoudhury, Phys. Plasmas  10, 4162 (2009)

    Article  ADS  Google Scholar 

  32. W Massod, N Imtiaz and M Siddiq, Phys. Scr.  80, 015501 (2009)

    Article  ADS  Google Scholar 

  33. M Eghbali, B Farokhi and M Eslamifar, Pramana – J. Phys.  88: 1 (2016)

    Google Scholar 

  34. M Amina, S A Ema and A A Mamun, Pramana – J. Phys.  88: 6 (2017)

    Article  Google Scholar 

  35. R Sabry, S K El-Labany and P K Shukla, Phys. Plasmas 15, 122310 (2008)

    Article  ADS  Google Scholar 

  36. K Javidan and H R Pakzad, Indian J. Phys.  87, 83 (2012)

    Article  ADS  Google Scholar 

  37. S K El-Labany, M Shalaby, R Sabry and L S El-Sherif, Astrophys. Space Sci.  340, 101 (2014)

    Article  ADS  Google Scholar 

  38. H Demiray and E R El-Zahar, Phys. Plasmas  25, 042102 (2018)

    Article  ADS  Google Scholar 

  39. T K Baluku, M A Helberg, I Kourakis and N S Saini, Phys. Plasmas  17, 053702 (2010)

    Article  ADS  Google Scholar 

  40. S Bansal, M Aggarwal and T S Gill, J. Astrophys. Astron.  39, 27 (2018)

    Article  ADS  Google Scholar 

  41. H R Pakzad, Astrophys. Space Sci.  337, 217 (2012)

    Article  ADS  Google Scholar 

  42. W Malfliet, J. Comput. Appl. Math.  164, 529 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  43. A Merriche and M Tribeche, Physica A  421, 463 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Sona Bansal and Munish Aggarwal are thankful to Punjab Technical University, Kapurthala (India) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sona Bansal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, S., Aggarwal, M. Non-planar electron-acoustic waves with hybrid Cairns–Tsallis distribution. Pramana - J Phys 92, 49 (2019). https://doi.org/10.1007/s12043-018-1713-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1713-z

Keywords

PACS Nos

Navigation