Skip to main content

The impact of surface plasma on the total emission charge from PZST cathode induced by nanosecond electric pulse


Electron emission from antiferroelectric (\(\hbox {Pb}_{0.99}\hbox {Nb}_{0.02})\hbox {[(Zr}_{0.80}\hbox {Sn}_{0.20})_{0.952}\hbox {Ti}_{0.048}\hbox {]}_{0.98}\hbox {O}_{3}\) cathode has been investigated. The PZST cathode can maintain a metastable ferroelectric phase by the application of a high-enough field, thus implying three possibly pulse-loading configurations for electron emission measurements. The fact that emission charge is larger than the non-compensated charge indicates that the surface plasma contributes to the total emission charge. Furthermore, \(\chi _i \;(i=\text {A, B, C})\), characterising the contribution of surface plasma to the total emission charge, was defined. It was found that the emission charge increases almost linearly with \(\chi _i \). Our results are of great importance for a better understanding of electron emission in antiferroelectric / ferroelectric cathodes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    R Miller and S Savage, J. Appl. Phys. 31, 662 (1960)

    ADS  Article  Google Scholar 

  2. 2.

    H Gundel, H Reige, E J N Wilson, J Handerek and K Zioutas, Nucl. Instrum. Methods A 280, 1 (1989)

    ADS  Article  Google Scholar 

  3. 3.

    H Gundel, H Riege, J Handerek and K Zioutas, Appl. Phys. Lett. 54, 2071 (1989)

    ADS  Article  Google Scholar 

  4. 4.

    Z X Sheng, Y J Feng, Z Xu and X L Sun, J. Mater. Sci. 44, 556 (2009)

    ADS  Article  Google Scholar 

  5. 5.

    M Yaseen, X J Lou, X F Chen, W Ren, Y Liu, Y J Feng, P Shi and X Q Wu, Appl. Phys. Lett. 104, 222913 (2014)

    ADS  Article  Google Scholar 

  6. 6.

    G Rosenman, D Shur, K Garb, R Cohen and Y E Krasik, J. Appl. Phys. 82, 772 (1997)

    ADS  Article  Google Scholar 

  7. 7.

    H Riege, I Boscolo, J Handerek and U Herleb, J. Appl. Phys. 84, 1602 (1998)

    ADS  Article  Google Scholar 

  8. 8.

    G Rosenman, D Shur, Y E Krasik and A Dunaevsky, J. Appl. Phys. 88, 6109 (2000)

    ADS  Article  Google Scholar 

  9. 9.

    K Chirko, Y E Krasik, J Felsteiner and A Sternlieb, J. Appl. Phys. 92, 5691 (2002)

    ADS  Article  Google Scholar 

  10. 10.

    K Chirko, A Sayapin, Y E Krasik and J Felsteiner, Vacuum 77, 385 (2005)

    ADS  Article  Google Scholar 

  11. 11.

    M Einat, E Jerby and G Rosenman, IEEE Trans. Microw. Theory Tech. 50, 1227 (2002)

    Article  Google Scholar 

  12. 12.

    G A Mesyats, Phys.-Usp. 51, 79 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    X D Huang, Y J Feng and S Tang, Acta Phys. Sin. 61, 087702 (2012)

    Google Scholar 

  14. 14.

    V D Kugel, G Rosenman, D Shur and Y E Krasik, J. Appl. Phys. 78, 2248 (1995)

    ADS  Article  Google Scholar 

  15. 15.

    D Shur, G Rosenman and Y E Krasik, Appl. Phys. Lett. 70, 574 (1997)

    ADS  Article  Google Scholar 

  16. 16.

    V F Puchkarev and G A Mesyats, J. Appl. Phys. 78, 5633 (1995)

    ADS  Article  Google Scholar 

  17. 17.

    D N Shannon, P W Smith, P J Dobson and M J Shaw, Appl. Phys. Lett. 70, 1625 (1997)

    ADS  Article  Google Scholar 

  18. 18.

    Y Liu, X J Lou, Z Xu, H L He and Y J Feng, Ceram. Int. 40, 11057 (2014)

    Article  Google Scholar 

  19. 19.

    T Q Yang and X Yao, Ceram. Int. 34, 715 (2008)

    Article  Google Scholar 

  20. 20.

    C H Zhang, Z Xu, J J Gao, C J Zhu and X Yao, Chin. Phys. B 20, 097702 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    P Yang and D A Payne, J. Appl. Phys. 80, 4011 (1996)

    ADS  Google Scholar 

  22. 22.

    D D Jiang, J M Du, Y Gu and Y J Feng, J. Appl. Phys. 111, 024103 (2012)

    ADS  Article  Google Scholar 

  23. 23.

    D D Jiang, Y J Feng, J M Du and Y Gu, High Press. Res. 31, 436 (2011)

    ADS  Article  Google Scholar 

  24. 24.

    Z X Sheng, Y J Feng, Z Xu and X L Sun, Nucl. Instrum. Methods A 593, 539 (2008)

    ADS  Article  Google Scholar 

  25. 25.

    G A Mesyats, IEEE Trans. Elec. Insul. 2, 272 (1995)

    Google Scholar 

  26. 26.

    H C Miller, IEEE Trans. Elec. Insul. 28, 512 (1993)

    Article  Google Scholar 

  27. 27.

    S Beeson, J Dickens and A Neuber, Phys. Plasmas 20, 093509 (2013)

    ADS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China – NSAF (Grant No. U1230116), the Ministry of Science and Technology of China through an 863-Project (No. 2014DAA8092015) and the National Key Laboratory of Shock Wave and Detonation Physics through a fund (No. LSD201201003).

Author information



Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xu, X., Xu, Z. et al. The impact of surface plasma on the total emission charge from PZST cathode induced by nanosecond electric pulse. Pramana - J Phys 92, 58 (2019).

Download citation


  • Electron emission
  • metastable ferroelectric
  • surface plasma
  • emission charge


  • 77.22.Ej
  • 77.80.Dj
  • 77.84.Cg