Skip to main content
Log in

Decay of \(Z=82{-}102\) heavy nuclei via emission of one-proton and two-proton halo nuclei

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The halo structure of a nucleus is investigated on the basis of separation energy consideration and potential energy calculations. Most of the predictions on the existence of halo nuclei are found to agree with the available experimental studies. For the first time, the possibility of emitting proton halo (p-halo) nuclei from heavy nuclei within the range \(82 \le Z \le 102\) has been studied by evaluating decay half-lives for the emission of 1p-halo nuclei \(^{8}\hbox {B}\), \(^{12}\hbox {N}\), \(^{13}\hbox {N}\), \(^{17}\hbox {F}\) and 2p-halo nuclei \(^{9}\hbox {C}\), \(^{17}\hbox {Ne}\), \(^{18}\hbox {Ne}\), \(^{20}\hbox {Mg}\) using Coulomb and proximity potential model (CPPM). Of these, the emissions of 1p-halo nuclei \(^{8}\hbox {B}\), \(^{12}\hbox {N}\), \(^{13}\hbox {N}\) and \(^{17}\hbox {F}\) are found to be probable from various heavy nuclei as the half-lives of the corresponding emissions are within the experimental upper limit (\(T_{1/2}\le 10^{30}\,\hbox {s}\)). When dealing with 2p-halo nuclei, its emission is observed to be less probable compared to 1p-halo nuclei, except \(^{18}\hbox {Ne}\). Compared to the probability of emission of a normal cluster, the probability of emission of a p-halo nucleus from a radioactive nuclide is found to be less but still, there is a finite probability of p-halo emissions from heavy nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P G Hansen and A S Jensen, Annu. Rev. Nucl. Part. Sci. 45, 591 (1995)

    Article  ADS  Google Scholar 

  2. J Al-Khalili, Lect. Notes Phys. 651, 77 (2004)

    Article  ADS  Google Scholar 

  3. G Saxena and D J Singh, Exp. Theor. Phys. 116, 567 (2013)

    Article  ADS  Google Scholar 

  4. R J Carroll, R D Page, D T Joss, J Uusitalo, I G Darby, K Andgren, B Cederwall, S Eeckhaudt, T Grahn, C Gray-Jones, P Greenlees, B Hadinia, P Jones, R Julin, S Juutinen, M Leino, A P Leppänen, M Nyman, D O Donnell, J Pakarinen, P Rahkila, M Sandzelius, J Sarén, C Scholey, D Seweryniak and J B Simpson, Phys. Rev. Lett. 12, 092501 (2014)

    Article  ADS  Google Scholar 

  5. I Tanihata, H Hamagaki, O Hashimoto, Y Shida, N Yoshikawa, K Sugimoto, O Yamakawa, T Kobayashi and N Takahashi, Phys. Rev. Lett. 55, 2676 (1985)

    Article  ADS  Google Scholar 

  6. I Tanihata, H Hamagaki, O Hashimoto, S Nagamiya, Y Shida, N Yoshikawa, O Yamakawa, K Sugimoto, T Kobayashi, D E Greiner, N Takahashi and Y Nojiri, Phys. Lett. B 160, 380 (1985)

    Article  ADS  Google Scholar 

  7. P G Hansen and B Jonson, Europhys. News 4, 409 (1987)

    ADS  Google Scholar 

  8. S Bottoni et al, Phys. Rev. C 92, 024322 (2015)

    Article  ADS  Google Scholar 

  9. N Kobayashi et al, Phys. Rev. C 86, 054604 (2012)

    Article  ADS  Google Scholar 

  10. I Tanihata et al, Phys. Rev. Lett. 100, 192502 (2008)

    Article  ADS  Google Scholar 

  11. S E A Orrigo and H Lenske, Phys. Lett. B 677, 214 (2009)

    Article  ADS  Google Scholar 

  12. T Bjerge and K J Borgstrom, Nature 138, 400 (1936)

    Google Scholar 

  13. R Kanungo et al, Phys. Rev. Lett. 117, 102501 (2016)

  14. A Estrade et al, Phys. Rev. Lett. 113, 132501 (2014)

    Article  ADS  Google Scholar 

  15. K Tanaka et al, Phys. Rev. Lett. 104, 062701 (2010)

    Article  ADS  Google Scholar 

  16. Y Togano et al, Phys. Lett. B 761, 412 (2016)

    Article  ADS  Google Scholar 

  17. M Takechi et al, Phys. Rev. C 90, 061305 (2014)

    Article  ADS  Google Scholar 

  18. N Kobayashi et al, Phys. Rev. Lett. 112, 242501 (2014)

    Article  ADS  Google Scholar 

  19. K E Rehm et al, Phys. Rev. Lett. 81, 3341 (1998)

    Article  ADS  Google Scholar 

  20. A D Pietro, V Scuderi, A M Moro, L Acosta, F Amorini, M J G Borge, P Figuera, M Fisichella, L M Fraile and J G Camacho, Phys. Rev. C 85, 054607 (2012)

    Article  ADS  Google Scholar 

  21. M Mazzocco, C Signorini, M Romoli, A D Franesco, M DiPietro, E Vardaci, K Yoshida, R Yoshida, A Bonetti, A DeRosa and T Glodariu, Eur. Phys. J. A 28, 295 (2006)

    Article  ADS  Google Scholar 

  22. V Morcelle et al, Phys. Lett. B 732, 228 (2014)

    Article  ADS  Google Scholar 

  23. O R Kakuee et al, Nucl. Phys. A 728, 339 (2003)

    Article  ADS  Google Scholar 

  24. A M S Benıtez et al, Nucl. Phys. A 803, 30 (2008)

    Article  ADS  Google Scholar 

  25. L Acosta et al, Phys. Rev. C 84, 044604 (2011)

    Article  ADS  Google Scholar 

  26. L Standyło et al, Phys. Rev. C 87, 064603 (2013)

    Article  ADS  Google Scholar 

  27. R Wolski et al, Eur. J. Phys. A 47, 111 (2011)

    Article  ADS  Google Scholar 

  28. M Cubero et al, Phys. Rev. Lett. 109, 262701 (2012)

    Article  ADS  Google Scholar 

  29. J Casal, M Gómez-Ramos and A M Moro, Phys. Lett. B 767, 307 (2017)

    Article  ADS  Google Scholar 

  30. H Simon, D Aleksandrov, T Aumann, L Axelsson, T Baumann, M J G Borge, L V Chulkov, R Collatz, J Cub, W Dostal, B Eberlein, T W Elze, H Emling, H Geissel, A Grünschloss, M Hellström, J Holeczek, R Holzmann, B Jonson, J V Kratz, G A Kraus, R Kulessa, Y Leifels, A Leistenschneider, T Leth, I Mukha, G Münzenberg, F Nickel, T Nilsson, G Nyman, B Petersen, M Pfützner, A Richter, K Riisager, C Scheidenberger, G Schrieder, W Schwab, M H Smedberg, J Stroth, Surowiec, O Tengblad and M V Zhukov, Phys. Rev. Lett. 83, 496 (1999)

    Article  ADS  Google Scholar 

  31. M Aygun, Pramana – J. Phys. 88: 53 (2017)

    Article  ADS  Google Scholar 

  32. N Keeley, K W Kemper and K Rusek, Eur. Phys. J. A 50, 145 (2014)

    Article  ADS  Google Scholar 

  33. K Whitmore, D Smalley, H Iwasaki, T Suzuki, V M Bader, D Bazin, J S Berryman, B A Brown, C M Campbell, P Fallon, A Gade, C Langer, A Lemasson, C Loelius, A O Macchiavelli, C Morse, T Otsuka, J Parker, F Recchia, S R Stroberg, D Weisshaar and K Wimmer, Phys. Rev. C 91, 041303(R) (2015)

    Article  ADS  Google Scholar 

  34. T Aumann, Eur. Phys. J. A 26, 441 (2005)

    Article  ADS  Google Scholar 

  35. M V Zhukov, B V Danilin, D V Fedorov, J M Bang, I J Thompson and J S Vaagen, Phys. Rep. 231, 151 (1993)

    Article  ADS  Google Scholar 

  36. S C Pieper and R B Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001)

    Article  ADS  Google Scholar 

  37. D J Dean and M H Jensen, Rev. Mod. Phys. 75, 607 (2003)

    Article  ADS  Google Scholar 

  38. M K Sharma, R N Panda, M K Sharma and S K Patra, Phys. Rev. C 93, 014322 (2016)

    Article  ADS  Google Scholar 

  39. M Kamimura, M Yahiro, Y Iseri, Y Sakuragi, H Kameyama and M Kawai, Prog. Theor. Phys. Suppl. 89, 1 (1986)

    Article  ADS  Google Scholar 

  40. A Ono, H Horiuchi, T Maruyama and A Ohnishi, Phys. Rev. Lett. 68, 2898 (1992)

    Article  ADS  Google Scholar 

  41. V Varga, Y Suzuki and R G Lovas, Nucl. Phys. A 571, 447 (1994)

    Article  ADS  Google Scholar 

  42. Y Kucuk and E Aciksoz, Eur. Phys. J. A 52, 98 (2016)

    Article  ADS  Google Scholar 

  43. M V Zhukov and I J Thompson, Phys. Rev. C 52, 6 (1995)

    Article  Google Scholar 

  44. T Minamisono, T Ohtsubo, I Minami, S Fukuda, A Kitagawa, M Fukuda, K Matsuta, Y Nojiri, S Takeda, H Sagawa and H Kitagawa, Phys. Rev. Lett. 69, R14 (1992)

    Article  Google Scholar 

  45. R K Gupta, S Kumar, M Balasubramaniam, G Munzenberg and W Scheid, J. Phys. G: Nucl. Part. Phys. 28, 699 (2002)

    Article  ADS  Google Scholar 

  46. R K Biju, M K Preethi Rajan and K P Santhosh, Proceedings of the DAE- Symposium on Nuclear Physics, edited by B K Nayak, D Dutta and S M Sharma (Prudent Art & Fab Pvt Ltd, India, 2015) Vol. 60, p. 152

  47. G Sawhney, M K Sharma and R K Gupta, J. Phys. G: Nucl. Part. Phys. 41, 055101 (2014)

    Article  ADS  Google Scholar 

  48. S Watanabe, K Minomo, M Shimada, S Tagami, M Kimura, M Takechi, M Fukuda, D Nishimura, T Suzuki, T Matsumoto, Y R Shimizu and M Yahiro, Phys. Rev. C 89, 044610 (2014)

    Article  ADS  Google Scholar 

  49. W Schwab et al, Z. Phys. A 350, 283 (1995)

    Article  ADS  Google Scholar 

  50. V Guimarães, J J Kolata, D Peterson, P Santi, R H W Stevens, S M Vincent, F D Becchetti, M Y Lee, T W Odonnell, D A Roberts and J A Zimmerman, Phys. Rev. Lett 84, 1862 (2000)

    Article  ADS  Google Scholar 

  51. A Ozawa, T Kobayashi, H Sato, D Hirata, I Tanihata, O Yamakawa, K Omata, K Sugimoto, D Olson, W Christie and H Wieman, Phys. Lett. B 334, 18 (1994)

    Article  ADS  Google Scholar 

  52. D Q Fang et al, Phys. Rev. C 76, 031601 (2007)

    Article  ADS  Google Scholar 

  53. R Morlock, R Kunz, A Mayer, M Jaeger, A Müller and J W Hammer, Phys. Rev. Lett. 79, 3837 (1997)

    Article  ADS  Google Scholar 

  54. Z Ren, B Chen, Z Ma and G Xu, Phys. Rev. C 53, R572, (1996)

    Article  ADS  Google Scholar 

  55. X Z Cai et al, Phys. Rev. C 65, 024610 (2002)

    Article  ADS  Google Scholar 

  56. E F Aguilera, P A Valenzuela, E M Quiroz and J F Arnaiz, J J Kolata and V Guimaraes, Phys. Rev. C 93, 034613 (2016)

    Article  ADS  Google Scholar 

  57. J Lubian, T Correa, E F Aguilera, L F Canto, A G Camacho, E M Quiroz and P R S Gomes, Phys. Rev. C 79, 064605 (2009)

    Article  ADS  Google Scholar 

  58. J A Tostevin, F M Nunes and I J Thompson, Phys. Rev. C 63, 024617 (2001)

    Article  ADS  Google Scholar 

  59. A Pakou et al, Phys. Rev. C 87, 014619 (2013)

    Article  ADS  Google Scholar 

  60. A Barioni, J C Zamora, V Guimaraes, B Paes, J Lubian, E F Aguilera, J J Kolata, A L Roberts, F D Becchetti, A Villano, M Ojaruega and H Jiang, Phys. Rev. C 84, 014603 (2011)

    Article  ADS  Google Scholar 

  61. J Rangel, J Lubian, P R S Gomes, B V Carlson, L C Chamon and A Gomez-Camacho, Eur. Phys. J. A 49, 57 (2013)

    Article  ADS  Google Scholar 

  62. J Rangel, J Lubian, L F Canto and P R S Gomes, Phys. Rev. C 93, 054610 (2016)

    Article  ADS  Google Scholar 

  63. L F Canto, P R S Gomes, R Donangelo and M S Hussein, Phys. Rep. 424, 1 (2006)

    Article  ADS  Google Scholar 

  64. A Sandulescu, D N Poenaru and W Greiner, Sovt. J. Part. Nucl. 11, 528 (1980)

    Google Scholar 

  65. H J Rose and G A Jones, Nature 307, 245 (1984)

    Article  ADS  Google Scholar 

  66. K P Santhosh and B Priyanka, Phys. Rev. C 87, 064611 (2013)

    Article  ADS  Google Scholar 

  67. K P Santhosh and B Priyanka, Int. J. Mod. Phys. E 22, 11 (2013)

    Article  Google Scholar 

  68. K P Santhosh and B Priyanka, Eur. Phys. J. A 49, 66 (2013)

    Article  ADS  Google Scholar 

  69. K P Santhosh and B Priyanka, Int. J. Mod. Phys. E 23, 1450059 (2014)

    Article  ADS  Google Scholar 

  70. K P Santhosh and A Joseph, Pramana – J. Phys. 55, 375 (2000)

    Article  ADS  Google Scholar 

  71. K P Santhosh and A Joseph, Pramana – J. Phys. 58, 611 (2002)

    Article  ADS  Google Scholar 

  72. Y J Shi and W J Swiatecki, Phys. Rev. Lett. 54, 300 (1985)

    Article  ADS  Google Scholar 

  73. J Blocki, J Randrup, W J Swiatecki and C F Tsang, Ann. Phys. (NY) 105, 427 (1977)

    Article  ADS  Google Scholar 

  74. J Blocki and W J Swiatecki, Ann. Phys. (NY) 132, 53 (1981)

    Article  ADS  Google Scholar 

  75. D N Poenaru, M Ivascu, A Sandulescu and W Greiner, J. Phys. G 10, L183 (1984)

    Article  ADS  Google Scholar 

  76. S Athanassopoulos, E Mavrommatis, K A Gernoth and J W Clark, arXiv: nucl-th/0509075v1 (2005)

  77. M Wang, G Audi, A H Wapstra, F G Kondev, M MacCormick, X Xu and B Pfeiffer, Chin. Phys. C 36, 1603 (2012)

    Article  Google Scholar 

  78. A Leistenschneider et al, Phys. Rev. Lett. 86, 5442 (2001)

    Article  ADS  Google Scholar 

  79. V Yu Denisov and H Ikezoe, Phys. Rev. C 72, 064613 (2005)

    Article  ADS  Google Scholar 

  80. K N Huang, M Aoyagi, M H Chen, B Crasemann and H Mark, At. Data Nucl. Data Tables 18, 243 (1976)

    Article  ADS  Google Scholar 

  81. H Koura, T Tachibana, M Uno and M Yamada, Prog. Theor. Phys. 113, 305 (2005)

    Article  ADS  Google Scholar 

  82. A Ozawa, T Suzuki and I Tanihata, Nucl. Phys. A 693, 32 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K P Santhosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhosh, K.P., Sukumaran, I. Decay of \(Z=82{-}102\) heavy nuclei via emission of one-proton and two-proton halo nuclei. Pramana - J Phys 92, 6 (2019). https://doi.org/10.1007/s12043-018-1672-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1672-4

Keywords

PACS Nos

Navigation