Skip to main content
Log in

Dynamics of dark multisoliton and rational solutions for three nonlinear differential-difference equations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, three nonlinear differential-difference equations (NDDEs) from the same hierarchy are investigated using the generalised perturbation \((n,N-n)\)-fold Darboux transformation (DT) technique. The dark multisoliton solutions in terms of determinants for three equations are obtained by means of the discrete N-fold DT. Propagation and elastic interaction structures of such soliton solutions are shown graphically. The details of their evolutions are studied through numerical simulations. Numerical results show the accuracy of our numerical scheme and the stable evolutions of such dark multisolitons without a noise. We find that the solutions of lower-order NDDEs in the same hierarchy are more robust against a small noise than their corresponding higher-order NDDEs. The discrete generalised perturbation \((1,N-1)\)-fold DT is used to derive some discrete rational and semirational solutions of the first equation, and a few mathematical features are also discussed. Results in this paper might be helpful for understanding some physical phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M J Ablowitz and P A Clarkson, Solitons, nonlinear evolution equations and inverse scattering (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  2. A M Wazwaz, Pramana – J. Phys. 77, 233 (2011)

    Article  ADS  Google Scholar 

  3. A M Wazwaz, Pramana – J. Phys. 87: 68 (2016)

    Article  ADS  Google Scholar 

  4. Y Z Li and J G Liu, Pramana – J. Phys. 90: 71 (2018)

  5. Y K Liu and B Li, Pramana – J. Phys. 88: 57 (2017)

  6. Z Du, B Tian, X Y Xie, J Chai and X Y Wu, Pramana – J. Phys. 90: 45 (2018)

  7. D W Zuo, H X Jia and D M Shan, Superlattices Microst. 101, 522 (2017)

    Article  ADS  Google Scholar 

  8. D W Zuo and H X Jia, Optik 127, 11282 (2016)

    Article  ADS  Google Scholar 

  9. D W Zuo, H X Mo and H P Zhou, Z. Naturforsch A 71, 305 (2016)

    Article  ADS  Google Scholar 

  10. D W Zuo, Appl. Math. Lett. 79, 182 (2018)

    Article  MathSciNet  Google Scholar 

  11. M Wadati, Prog. Theor. Phys. Suppl. 59, 36 (1977)

    Article  ADS  Google Scholar 

  12. V Zakhov, S Musher and A Rubenshik, Sov. Phys. Lett. 19, 151 (1974)

    ADS  Google Scholar 

  13. M Toda, Theory of nonlinear lattices (Springer, Berlin, 1989)

    Book  Google Scholar 

  14. D J Kaup, Math. Comput. Simul. 69, 322 (2005)

    Article  Google Scholar 

  15. R Hirota, J. Phys. Soc. Jpn. 35, 289 (1973)

    Article  ADS  Google Scholar 

  16. N Liu and X Y Wen, Mod. Phys. Lett. B 32, 1850085 (2018)

    Article  ADS  Google Scholar 

  17. F J Yu and S Feng, Math. Methods Appl. Sci. 40, 5515 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. F J Yu, Chaos 27, 023108 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. W X Ma and X X Xu, J. Phys. A 37, 1323 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. W X Ma, J. Phys. A  40, 15055 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. X Y Wen, Z Y Yan and B A Malomed, Chaos 26, 013105 (2016)

    Article  MathSciNet  Google Scholar 

  22. X Y Wen and D S Wang, Wave Motion 79, 84 (2018)

    Article  MathSciNet  Google Scholar 

  23. Y F Zhang and W J Rui, Rep. Math. Phys. 78, 19 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. Y F Zhang, X Z Zhang, Y Wang and J G Liu, Z. Naturforsch. A 72, 77 (2017)

  25. Y F Zhang, X Z Zhang and H H Dong, Commun. Theor. Phys. 68, 755 (2017)

    Article  ADS  Google Scholar 

  26. M Wadati, Prog. Theor. Phys. Suppl. 59, 36 (1976)

    Article  ADS  Google Scholar 

  27. Y T Wu and X G Geng, J. Phys. A 31, 677 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. L N Trefethen, Spectral methods in MATLAB (SIAM, Philadelphia, 2000).

    Book  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University (QXTCP-B201704), the NSFC under Grant Nos 11375030 and 61178091, the Beijing Natural Science Foundation under Grant No. 1153004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yong Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wen, XY. Dynamics of dark multisoliton and rational solutions for three nonlinear differential-difference equations. Pramana - J Phys 92, 10 (2019). https://doi.org/10.1007/s12043-018-1671-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1671-5

Keywords

PACS Nos

Navigation