Skip to main content
Log in

Semirational rogue waves for the three coupled variable-coefficient nonlinear Schrödinger equations in an inhomogeneous multicomponent optical fibre

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we investigate the three coupled variable-coefficient nonlinear Schrödinger equations, which describe the amplification or attenuation of the picosecond pulse propagation in the inhomogeneous multicomponent optical fibre with different frequencies or polarisations. Based on the Darboux dressing transformation, semirational rogue wave solutions are derived. Semirational rogue waves, Peregrine combs and Peregrine walls are obtained and demonstrated. Splitting behaviour of the semirational Peregrine combs and attenuating phenomenon of the semirational Peregrine wall are exhibited. Effects of the group velocity dispersion, nonlinearity and fibre gain / loss are discussed according to the different fibres. We find that the maximum amplitude of the hump of the semirational rogue wave is less than nine times the background height due to the interaction between the soliton part and rogue wave part. Further, there is a bent in the soliton part of the semirational rogue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A Hasegawa and F Tappert, Appl. Phys. Lett. 23, 171 (1973) Q M Huang and Y T Gao, Nonlinear Dyn. 89, 2855 (2017) X Y Gao, Ocean Engng 96, 245 (2015)

  2. L F Mollenauer, R H Stolen and J P Gordon, Phys. Rev. Lett. 45, 1095 (1980) G F Deng, Y T Gao and X Y Gao, Wave Random Complex. 28, 468 (2018) Y J Feng, Y T Gao and X Yu, Nonlinear Dyn. 91, 29 (2018) Q M Huang, Y T Gao, S L Jia, Y L Wang and G F Deng, Nonlinear Dyn. 87, 2529 (2017)

  3. L Wang, Z Q Wang, W R Sun, Y Y Shi, M Li and M Xu, Commun. Nonlinear Sci. Numer. Simulat. 47, 190 (2017) G F Deng and Y T Gao, Eur. Phys. J. Plus 132, 255 (2017) P Jin, C A Bouman and K D Sauer, IEEE Trans. Comput. Imaging 1, 200 (2015)

  4. G Herink, F Kurtz, B Jalali, D R Solli and C Ropers, Science 356, 50 (2017)

    Article  ADS  Google Scholar 

  5. K Krupa, K Nithyanandan, U Andral, P Tchofo-Dinda and P Grelu, Phys. Rev. Lett. 118, 243901 (2017)

    Article  ADS  Google Scholar 

  6. P Wang, X Xiao and C Yang, Opt. Lett. 42, 29 (2017)

    Article  ADS  Google Scholar 

  7. W Liu, M Liu, Y OuYang, H Hou, G Ma, M Lei and Z Wei, Nanotechnology 29, 174002 (2018)

    Article  ADS  Google Scholar 

  8. D J Ding, D Q Jin and C Q Dai, Therm. Sci. 21, 1701 (2017)

    Article  Google Scholar 

  9. Y Y Wang, L Chen, C Q Dai, J Zheng and Y Fan, Nonlinear Dyn. 90, 1269 (2017)

    Article  Google Scholar 

  10. K Roy, S K Ghosh and P Chatterjee, Pramana – J. Phys. 86, 873 (2016)

    Google Scholar 

  11. A R Seadawy, Pramana – J. Phys. 89: 49 (2016)

    MathSciNet  Google Scholar 

  12. D H Peregrine, J. Aust. Math. Soc. B 25, 16 (1983)

    Article  Google Scholar 

  13. A Ankiewicz, J M Soto-Crespo and N Akhmediev, Phys. Rev. E 81, 046602 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. C G L Tiofack, S Coulibaly, M Taki, S De Bievre and G Dujardin, Phys. Rev. A 92, 043837 (2015)

    Article  ADS  Google Scholar 

  15. L Wang, J H Zhang, C Liu, M Li and F H Qi, Phys. Rev. E 93, 062217 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Y S Kivshar and G P Agrawal, Optical solitons: From fibers to photonic crystals (Academic Press, San Diego, 2003)

    Google Scholar 

  17. B Zhang, X L Zhang and C Q Dai, Nonlinear Dyn. 87, 2385 (2017)

    Article  Google Scholar 

  18. C Q Dai, G Q Zhou, R P Chen, X J Lai and J Zheng, Nonlinear Dyn. 88, 2629 (2017)

    Article  Google Scholar 

  19. N Akhmediev, A Ankiewicz and M Taki, Phys. Lett. A 373, 675 (2009)

    Article  ADS  Google Scholar 

  20. A Degasperis, M Conforti, F Baronio and S Wabnitz, Phys. Rev. Lett. 97, 093901 (2006)

    Article  ADS  Google Scholar 

  21. M Conforti, F Baronio, A Degasperis and S Wabnitz, Phys. Rev. E 74, 065602(R) (2006)

    Article  ADS  Google Scholar 

  22. B L Guo and L M Ling, Chin. Phys. Lett. 28, 110202 (2011)

    Article  ADS  Google Scholar 

  23. Y K Liu and B Li, Pramana – J. Phys. 88: 57 (2017)

    Google Scholar 

  24. S Chen, J M Soto-Crespo, F Baronio, P Grelu and D Mihalache, Opt. Express 24, 15251 (2016)

    Article  ADS  Google Scholar 

  25. Z Wen and Z Yan, Chaos 27, 033118 (2017) J J Su and Y T Gao, Superlattice. Microstuct. 120, 697 (2018)

  26. Y Y Wang, C Q Dai, Y Q Xu, J Zheng and Y Fan, Nonlinear Dyn. 92, 1261 (2018).

    Article  Google Scholar 

  27. M J Ablowitz and H Segur, Solitons and the inverse scattering transform (SIAM, Philadelphia, 1981)

    Book  Google Scholar 

  28. C Rogers and W F Shadwick, Bäcklund transformations and their application (Academic Press, New York, 1982)

    MATH  Google Scholar 

  29. V A Matveev and M A Salle, Darboux transformation and solitons (Springer, Berlin, 1991)

    Book  Google Scholar 

  30. G P Agrawal, Nonlinear fiber optics (Academic Press, New York, 1995)

    MATH  Google Scholar 

  31. S H Chen and L Y Song, Phys. Rev. E 87, 032910 (2013)

    Article  ADS  Google Scholar 

  32. F Baronio, M Conforti, A Degasperis and S Lombardo, Phys. Rev. Lett. 111, 114101 (2013) T T Jia, Y Z Chai and H Q Hao, Superlattice. Microstruct. 105, 172 (2017)

  33. A Degasperis and S Lombardo, Phys. Rev. E 88, 052914 (2013)

    Article  ADS  Google Scholar 

  34. D Mogilevtsev, T A Birks and P S Russell, Opt. Lett. 23, 1662 (1998) X Y Gao, Appl. Math. Lett. 73, 143 (2017)

  35. R H Stolen and C Lin, Phys. Rev. A 17, 1448 (1978) J J Su and Y T Gao, Eur. Phys. J. Plus 133, 96 (2018)

  36. J W Liang, T Xu, M Y Tang and X D Liu, Nonlinear Anal. Real 14, 329 (2013)

    Article  Google Scholar 

  37. L Wang, L L Zhang, Y J Zhu, F H Qi, P Wang, R Guo and M Li, Commun. Nonlinear Sci. Numer. Simul. 40, 216 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  38. M S M Rajan, A Mahalingam and A Uthayakumar, Ann. Phys. 346, 1 (2014)

    Article  ADS  Google Scholar 

  39. J Chai, B Tian, Y F Wang, W R Sun and Y P Wang, Z. Naturforsch. A 71, 525 (2016)

  40. A Degasperis and S Lombardo, J. Phys. A 40, 961 (2007)

  41. O C Wright III, Chaos Solitons Fractals 33, 374 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. O C Wright III, Hirota equation, unstable plane waves and heteroclinic connections faculty summer grants (Cedarville University, Cedarville, OH, 2006)

    Google Scholar 

  43. V N Serkin and A Hasegawa, Phys. Rev. Lett. 85, 4502 (2000); IEEE J. Sel. Top. Quantum Electron. 8, 418 (2002)

  44. B A Malomed, Soliton management in periodic systems (Springer, Berlin, 2006)

    MATH  Google Scholar 

  45. C Q Dai, G Q Zhou and J F Zhang, Phys. Rev. E 85, 016603 (2012)

    Article  ADS  Google Scholar 

  46. V A Bogatyrev et al, J. Lightwave Technol. 9, 561 (1991)

  47. R Y Hao, L Li, Z H Li and G S Zhou, Phys. Rev. E 70, 066603 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, HP., Tian, B., Chai, J. et al. Semirational rogue waves for the three coupled variable-coefficient nonlinear Schrödinger equations in an inhomogeneous multicomponent optical fibre. Pramana - J Phys 92, 9 (2019). https://doi.org/10.1007/s12043-018-1670-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1670-6

Keywords

PACS Nos

Navigation