Skip to main content
Log in

Nonlinear stability and thermomechanical analysis of hydromagnetic Falkner–Skan Casson conjugate fluid flow over an angular–geometric surface based on Buongiorno’s model using homotopy analysis method and its extension

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper aims to provide stability and thermomechanical analysis of hydromagnetic Falkner–Skan Casson conjugate fluid flow over an angular–geometric wedge-shaped surface. Based on the Buongiorno’s model, the governing boundary-layer equations are derived and solved iteratively using the homotopy analysis method (HAM). Furthermore, the HAM-series solution is optimised by minimising its squared residual errors. It is shown that the proposed approach can serve as an efficient criterion for accurately solving nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V M Falkner and S W Skan, Philos. Mag. 12, 865 (1931)

    Article  Google Scholar 

  2. H Schlichting, Boundary-layer theory, 7th edn (McGraw-Hill, New York, 1978)

    MATH  Google Scholar 

  3. J Buongiorno, ASME J. Heat Transfer 128, 240 (2006)

    Article  Google Scholar 

  4. T Hussain, S A Shehzad, A Alsaedi, T Hayat and M Ramzan, J. Cent. South Univ. 22, 1132 (2015)

    Article  Google Scholar 

  5. C S K Raju, M M Hoque and T Sivasankar, Adv. Powder Technol. 28, 575 (2017)

    Article  Google Scholar 

  6. G Kumaran and N Sandeep, J. Mol. Liq. 233, 262 (2017)

    Article  Google Scholar 

  7. N S Akbar, J. Magn. Magn. Mater. 378, 463 (2015)

    Article  ADS  Google Scholar 

  8. K U Rehman, A Qaiser, M Y Malik and U Ali, Chin. J. Phys. 55, 1605 (2017)

    Article  Google Scholar 

  9. G S Seth, R Tripathi and M K Mishra, Appl. Math. Mech. 38, 1613 (2017)

    Article  Google Scholar 

  10. M S Abel, J Tawade and M M Nandeppanavar, Int. J. Nonlinear Mech. 44, 990 (2009)

    Article  ADS  Google Scholar 

  11. N Casson, Rheology of dispersed systems (C.C. Mills, New York, 1959)

    Google Scholar 

  12. M Nakamura and T Sawada, J. Non-Newton. Fluid 22, 191 (1987)

    Article  Google Scholar 

  13. M Nakamura and T Sawada, J. Biomech. Eng. Trans. ASME 110, 137 (1988)

    Article  Google Scholar 

  14. E C Bingham, Fluidity and plasticity (McGraw-Hill, New York, 1922)

    Google Scholar 

  15. F M White, Viscous fluid flow, 2nd edn (McGraw-Hill, New York, 1991)

    Google Scholar 

  16. K Ahmad, Z Hanouf and A Ishak, Eur. Phys. J. Plus 132, 87 (2017)

    Article  Google Scholar 

  17. S J Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. thesis (Shanghai Jiao Tong University, Shanghai, 1992)

  18. S J Liao, Beyond perturbation: Introduction to the homotopy analysis method (Chapman & Hall\(/\)CRC Press, Boca Raton, 2003)

  19. S J Liao, Commun. Nonlinear Sci. Numer. Simul. 14, 983 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. S J Liao, Appl. Math. Mech. 19, 957 (1998)

    Article  Google Scholar 

  21. S J Liao, Appl. Math. Comput. 147, 499 (2004)

    MathSciNet  Google Scholar 

  22. B Yao and J Chen, Appl. Math. Comput. 208, 156 (2009)

    MathSciNet  Google Scholar 

  23. E Khoshrouye Ghiasi and R Saleh, Results Phys. 11, 65 (2018)

  24. J Cheng, S J Liao, R N Mohapatra and K Vajravelu, J. Math. Anal. Appl. 343, 233 (2008)

    Article  MathSciNet  Google Scholar 

  25. M N Tufail, A S Butt and A Ali, J. Appl. Mech. Tech. Phys. 57, 900 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. M S Hashmi, N Khan, T Mahmood and S A Shehzad, Int. J. Therm. Sci. 111, 463 (2017)

    Article  Google Scholar 

  27. S J Liao, Commun. Nonlinear Sci. Numer. Simul. 15, 2003 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  28. K Yabushita, M Yamashita and K Tsuboi, J. Phys. A 40, 8403 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. V Marinca and N Herişanu, Int. Commun. Heat Mass 35, 710 (2008)

    Article  Google Scholar 

  30. V Marinca, N Herişanu, C Bota and B Marinca, Appl. Math. Lett. 22, 245 (2009)

    Article  MathSciNet  Google Scholar 

  31. D Pal and H Mondal, Appl. Math. Comput. 212, 194 (2009)

    MathSciNet  Google Scholar 

  32. S Mukhopadhyay, I C Mondal and A J Chamkha, Heat Trans. Asian Res. 42, 665 (2013)

    Article  Google Scholar 

  33. B L Kuo, Acta Mech. 164, 161 (2003)

    Article  Google Scholar 

  34. A H Craven and L A Peletier, Mathematika 19, 135 (1972)

    Article  MathSciNet  Google Scholar 

  35. B Oskam and A E P Veldman, J. Eng. Math. 16, 295 (1982)

    Article  Google Scholar 

  36. M Z Salleh, R Nazar and I Pop, Chem. Eng. Commun. 196, 987 (2009)

    Article  Google Scholar 

  37. M Z Salleh, R Nazar and I Pop, Acta Appl. Math. 112, 263 (2010)

    Article  MathSciNet  Google Scholar 

  38. L Fusi, A Farina and F Rosso, Int. J. Nonlinear Mech. 64, 33 (2014)

    Article  ADS  Google Scholar 

  39. E Moreno, A Larese and M Cervera, J. Non-Newton. Fluid 228, 1 (2016)

    Article  Google Scholar 

  40. P K Swamee and N Aggarwal, J. Petrol. Sci. Eng. 76, 178 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Saleh.

Appendix A

Appendix A

The constitutive equation of the Bingham plastic model can be expressed as [14]

$$\begin{aligned} \left\{ {{\begin{array}{l} {{\begin{array}{l} {{{e}}_{ij} =0,\quad \dfrac{1}{2}\tau _{ij} \tau _{ji} \le P_y^2 ,} \\ \end{array} }} \\ {\tau _{ij} =2\left( {\mu _{\mathrm{B}} +\dfrac{P_y }{\sqrt{2\psi }}} \right) {e}_{ij} ,\quad \dfrac{1}{2}\tau _{ij} \tau _{ji} >P_y^2 .} \\ \end{array} }} \right. \end{aligned}$$
(A1)

It can be seen from eq. (A1), that the viscosity coefficient \(\mu _{\mathrm{B}} \) diverges while the velocity gradient becomes zero (see [12]). It is noteworthy to mention that more details on the Bingham plastic model have also been reported in some previous studies (see [38,39,40]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, E.K., Saleh, R. Nonlinear stability and thermomechanical analysis of hydromagnetic Falkner–Skan Casson conjugate fluid flow over an angular–geometric surface based on Buongiorno’s model using homotopy analysis method and its extension. Pramana - J Phys 92, 12 (2019). https://doi.org/10.1007/s12043-018-1667-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1667-1

Keywords

PACS No

Navigation